{ 2D PROJECTIVE GEOMETRIC ALGEBRA } 2D PGA CHEAT SHEET SIGGRAPH 2019 COURSE NOTES

BASICS

Basis & Metric:

$\mathbb{R}^*_{2,0,1}$

		VECTOR			BIVECTOR			I= PSS
	1	\mathbf{e}_0	\mathbf{e}_1	\mathbf{e}_2	e_{01}	e_{20}	\mathbf{e}_{12}	e_{012}
	+1	0	+1	+1	0	0	-1	0
ſ		LINE : ℓ		POINT : P				

Multiplication Table:

1	\mathbf{e}_0	\mathbf{e}_1	\mathbf{e}_2	${\bf e}_{01}$	${\bf e}_{20}$	\mathbf{e}_{12}	${\bf e}_{012}$
\mathbf{e}_0	0	${\bf e}_{01}$	$-e_{20}$	0	0	e_{012}	0
\mathbf{e}_1	-e ₀₁	1	\mathbf{e}_{12}	$-{\bf e}_0$	e_{012}	\mathbf{e}_2	${\bf e}_{20}$
\mathbf{e}_2	${\bf e}_{20}$	$-e_{12}$	1	e_{012}	\mathbf{e}_0	- e ₁	\mathbf{e}_{01}
${\bf e}_{01}$	0	\mathbf{e}_0	e_{012}	0	0	$-e_{20}$	0
\mathbf{e}_{20}	0	${\bf e}_{012}$	$-{\bf e}_0$	0	0	\mathbf{e}_{01}	0
\mathbf{e}_{12}	e_{012}	$-\mathbf{e}_2$	\mathbf{e}_1	${\bf e}_{20}$	- e ₀₁	-1	$-{\bf e}_0$
e_{012}	0	${\bf e}_{20}$	\mathbf{e}_{01}	0	0	- e ₀	0

Operators:

ab		Geometric Product	
\mathbf{a}^*		Dual	
\mathbf{a}^{\perp}	aI	Polar	
ã		Reverse	
â		Normalization	
$\langle \mathbf{a} \rangle_{\mathbf{n}}$		Select grade n	
$\mathbf{a} \wedge \mathbf{b}$	$\langle {f a} {f b} angle_{{f s}+{f t}}$	Outer Product	meet
$\mathbf{a} \lor \mathbf{b}$	$(\mathbf{a}^* \wedge \mathbf{b}^*)^*$	Regressive Product	join
$\mathbf{a} \cdot \mathbf{b}$	$\langle {f a} {f b} angle_{ {f s}-{f t} }$	Inner Product	
$\mathbf{a} \times \mathbf{b}$	$\frac{1}{2}(\mathbf{ab} - \mathbf{ba})$	Commutator Product	
	abã	Sandwich Product	

Dual, Reverse:

Multivector	$a + b\mathbf{e_0} + c\mathbf{e_1} + d\mathbf{e_2} + e\mathbf{e_{01}} + f\mathbf{e_{20}} + g\mathbf{e_{12}} + h\mathbf{e_{012}}$
Dual	$h + ge^{0} + fe^{1} + ee^{2} + de^{01} + ce^{20} + be^{12} + ae^{012}$
Reverse	$a + b\mathbf{e_0} + \mathbf{ce_1} + \mathbf{de_2} - \mathbf{ee_{01}} - \mathbf{fe_{20}} - \mathbf{ge_{12}} - \mathbf{he_{012}}$

Sub-algebras:

{1}	\mathbb{R}	Real	$\{1, \mathbf{e_{12}}\}$	\mathbb{C}	Complex
$\{1, \mathbf{e_0}\}$	\mathbb{D}	Dual	$\{1, \mathbf{e_1}\}$	\mathbb{D}	Hyperbolic
$\{1, \mathbf{e_{12}}\}$		rotors	$\{1, \mathbf{e_{01}}, \mathbf{e_{2}}\}$	20 }	translators
$\{1, \mathbf{e_{01}}, \mathbf{e_{20}}, \mathbf{e_{12}}\}$		motors			

GEOMETRY

Points, Lines:				
Euclidean point at (x, y)	$x\mathbf{e}_{20} + y\mathbf{e}_{01} + \mathbf{e}_{12}$			
Direction (ideal point) (x,y)	$x\mathbf{e}_{20} + y\mathbf{e}_{01}$			
Line with eq. $a\mathbf{x} + b\mathbf{y} + c = 0$	$\ell = a\mathbf{e}_1 + b\mathbf{e}_2 + c\mathbf{e}_0$			
Incidence:				
Join points $\mathbf{P}_1,\mathbf{P}_2$ in line $oldsymbol{\ell}$	$\boldsymbol{\ell} = \mathbf{P}_1 \vee \mathbf{P}_2$			
Meet lines ℓ_1,ℓ_2 in point P	$P = \ell_1 \wedge \ell_2$			
Project, Reject:				
Line orthogonal to line ℓ , through point P	$\boldsymbol{\ell}\cdot\mathbf{P}=\boldsymbol{\ell}\times\mathbf{P}$			
Project point P on line ℓ	$(\boldsymbol{\ell}\cdot\mathbf{P})\boldsymbol{\ell}$			
Project line ℓ on point P	$(\boldsymbol{\ell}\cdot\mathbf{P})\mathbf{P}$			
Direction orthogonal to line ℓ	$\boldsymbol{\ell}^{\perp} := \boldsymbol{\ell} \mathbf{I}$			

Norms and numerical values:

Euc. norm of $\ell = c\mathbf{e}_0 + a\mathbf{e}_1 + b\mathbf{e}_2$:	$\ \boldsymbol{\ell}\ := \sqrt{\boldsymbol{\ell}^2} (= \sqrt{a^2 + b^2})$
Euc. norm of $P = xe_{20} + ye_{01} + ze_{12}$:	$\ \mathbf{P}\ := \sqrt{\mathbf{P}\tilde{\mathbf{P}}} \ (= \sqrt{z^2})$
Ideal norm of ideal $P = xe_{20} + ye_{01}$:	$\ \mathbf{P}\ _{\infty} := \sqrt{x^2 + y^2}$
Norm of motor m	$\ \mathbf{m}\ := \sqrt{m\tilde{m}}$
Numerical value of ideal $\ell = c\mathbf{e}_0$:	$\ \ell\ _{\infty} := c$
Numerical value of pseudoscalar aI	$ a\mathbf{I} _{\infty} = a$

Norm of motor m	$\ \mathbf{m}\ := \sqrt{\mathbf{m}}\mathbf{m}$
Numerical value of ideal $\ell=c\mathbf{e}_0$:	$\ \boldsymbol{\ell}\ _{\infty} := c$
Numerical value of pseudoscalar	$a\mathbf{I}$ $ a\mathbf{I} _{\infty} = a$
Metric:	
Distance between points $\mathbf{P}_1, \mathbf{P}_2$	$\ \mathbf{\hat{P}}_1 \lor \mathbf{\hat{P}}_2\ $, $\ \mathbf{\hat{P}}_1 \times \mathbf{\hat{P}}_2\ _{\infty}$
Angle of intersecting lines ℓ_1,ℓ_2	$\cos^{-1}(\hat{\boldsymbol{\ell}}_1 \cdot \hat{\boldsymbol{\ell}}_2), \sin^{-1}(\ \hat{\boldsymbol{\ell}}_1 \wedge \hat{\boldsymbol{\ell}}_2\)$
Distance parallel lines ℓ_1,ℓ_2	$\ \boldsymbol{\hat{\ell}}_1 \wedge \boldsymbol{\hat{\ell}}_2 \ _{\infty}$
Oriented dist. eucl. ${\bf P}$ to line ℓ	$\hat{\mathbf{P}} ee \hat{oldsymbol{\ell}}$, $\ \hat{\mathbf{P}} \wedge \hat{oldsymbol{\ell}}\ _{\infty}$
Angle betw. ideal P and line ℓ	$\sin^{-1} \ \mathbf{\hat{P}} \wedge \mathbf{\hat{\ell}}\ _{\infty}$
Angle bisector of ℓ_1 and ℓ_2	$(\hat{m{\ell}}_1 + \hat{m{\ell}}_2) ext{ or } \hat{m{\ell}}_1 - \hat{m{\ell}}_2$
Perp. bisector of \mathbf{P}_1 and \mathbf{P}_2	$(\mathbf{\hat{P}}_1 + \mathbf{\hat{P}}_2)(\mathbf{\hat{P}}_1 \vee \mathbf{\hat{P}}_2)$
Altitudes of $\Delta \mathbf{P}_1 \mathbf{P}_2 \mathbf{P}_3$	$(\mathbf{P}_1 \vee \mathbf{P}_2) \cdot \mathbf{P}_3$, etc.

Motors

Rotors & Translators:	
Rotator $lpha$ around point \mathbf{P}_E	$e^{\frac{\alpha}{2}\mathbf{P}_E} = \cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}\mathbf{P}_E$
Translator d orthogonal to \mathbf{P}_{∞}	$e^{\frac{d}{2}\mathbf{P}_{\infty}} = 1 + \frac{d}{2}\mathbf{P}_{\infty}$
Motor between lines ℓ_1 , ℓ_2	$\sqrt{\hat{\ell}_2\hat{\ell}_1}$
Logarithm of motor m	$\widehat{\langle \mathbf{m} \rangle_2}$
Compose & Apply:	
Compose motors \mathbf{m}_1 and \mathbf{m}_2	$\mathbf{m}_2\mathbf{m}_1$
Normalize motor m	$\widehat{\mathbf{m}} = \frac{\mathbf{m}}{\ \mathbf{m}\ }$
Square root of motor m	$\sqrt{\mathbf{m}} = (1 + \widehat{\mathbf{m}})$
Reflect element X in line ℓ	$\ell X \ell$
Transform ${f X}$ with motor ${f m}$	$mX ilde{m}$

More

Areas:	
Area of $\Delta \mathbf{P}_1 \mathbf{P}_2 \mathbf{P}_3$	$\frac{1}{2}(\hat{\mathbf{P}}_1 \vee \hat{\mathbf{P}}_2 \vee \hat{\mathbf{P}}_3)$
Length of closed loop $\mathbf{P}_1\mathbf{P}_2\mathbf{P}_n$	$\sum_{i=1}^{n-1} \ \hat{\mathbf{P}}_i \vee \hat{\mathbf{P}}_{i+1}\ $
Area of closed loop $\mathbf{P}_1\mathbf{P}_2\mathbf{P}_n$	$\frac{1}{2} \ (\sum_{i=1}^{n-1} \hat{\mathbf{P}}_i \vee \hat{\mathbf{P}}_{i+1}) \ _{\infty}$
Rigid Body Mechanics: (Valid in euclidean	ellintic & hyperbolic planes)

Kinematics-points, dynamics-lines linear+angular unified Element in the body/space frame $\mathbf{x}_b/\mathbf{x}_s$

Path of x under the motion g	$\mathbf{x}_s = \mathbf{g}\mathbf{x}_b\widetilde{\mathbf{g}},\mathbf{x}_b = \widetilde{\mathbf{g}}\mathbf{x}_s\mathbf{g}$
Velocity \mathbf{V}_b in the body	$\mathbf{V}_b = \mathbf{ ilde{g}\dot{g}}$ (a bivector)
Inertia tensor $A: \bigwedge^2 \leftrightarrow \bigwedge^1$	$maps\ vel. \leftrightarrow mom.\ in\ body$
Momentum line \mathbf{m}_b in the body	$\mathbf{m}_b = A(\mathbf{V}_b)$
Kinetic energy E	$E = \mathbf{m}_b \vee \mathbf{V}_b$
Euler Eq. of Motion 1:	$\dot{\mathbf{g}} = \mathbf{g}\mathbf{V}_b$
Euler EoM 2: ($\mathbf{f}_b = \text{ext. forces}$)	$\mathbf{\dot{V}}_b = 2A^{-1}(\mathbf{f}_b + (\mathbf{m}_b \times \mathbf{V}_b))$
Time derivative of energy ${\cal E}$	$\dot{E} = -2\mathbf{f}_b \vee \mathbf{V}_b$
Work $w(t) = E(t) - E(0)$	$= \int_0^t \dot{E} ds = -2 \int_0^t \mathbf{f}_b \vee \mathbf{V}_b ds$