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Overview

‘Geometric Algebra’ is an extremely useful approach to the
mathematics of physics, that allows one to use a common
language in a huge variety of contexts
E.g. complex variables, vectors, quaternions, matrix theory,
differential forms, tensor calculus, spinors, twistors, are all
subsumed under a common approach
Therefore results in great efficiency — can quickly get into new
areas
Also tends to suggest new geometrical (therefore physically
clear, and coordinate-independent) ways of looking at things
Will try today to introduce a few aspects of it in more detail —
principally applications to electromagnetism, quantum mechanics
and gravity — in fact will discuss all four forces of nature



For those who maybe have not been to the preceding lectures,
will give a short introduction to what GA is, but aim to move on
quickly to the new material with the Spacetime Algebra (STA)
For further info and pointers to where else it’s useful, look at
http://geometry.mrao.cam.ac.uk



Geometric Algebra

Know that for complex numbers there is a ‘unit imaginary’ i
Main property is that i2 = −1
How can this be? (any ordinary number squared is positive)
Troubled some very good mathematicians for many years
Usually these days an object with these properties just defined to
exist, and ‘complex numbers’ are defined as x + iy (x and y
ordinary numbers)
But consider following: Suppose have two directions in space

a and b (these are called ‘vectors’ as usual)
And suppose we had a language in which we could use vectors
as words and string together meaningful phrases and sentences
with them So e.g. ab or bab or abab would be meaningful
phrases



Geometric Algebra (contd.)

Now introduce two rules:
If a and b perpendicular, then ab = −ba
If a and b parallel (same sense) then
ab = |a||b| (product of lengths)
Just this does an amazing amount of
mathematics!
E.g. suppose have two unit vectors at
right angles
Rules say e2

1 = e1e1 = 1 , e2
2 = e2e2 = 1

and e1e2 = −e2e1



Geometric Algebra (contd.)

Try (e1e2)2

This is

e1e2e1e2 = −e1e1e2e2 = −1

We have found a geometrical object
(e1e2) which squares to minus 1 !
Can now see complex numbers are
objects of the form x + (e1e2)y
What is (e1e2) ? —– we call it a
bivector
Can think of it as an oriented plane
segment swept out in going from e1
to e2

More generally, given
any two vectors a and
b we can form a∧b
where we sweep out
over the angle
between them:



An algebra of geometric objects



Geometric Algebra
Consider a vector space with the usual inner product;

a·b

The new outer or wedge product produces a new quantity called
a bivector

a∧b

Combine these into a single geometric product:

ab = a·b + a∧b

Unlike the inner and outer products, this product is INVERTIBLE
Taking instead the geometric product as primary, we have

a·b = 1
2 (ab + ba)

and
a∧b = 1

2 (ab − ba)

This is basis for axiomatic development



3D Geometric Algebras cont
In 3D we have three orthonormal basis vectors: e1, e2, e3

e2
1 = 1, e2

2 = 1, e2
3 = 1, e1·e2 = e2·e3 = e3·e1 = 0

e1e2e3 = e1∧e2∧e3 ≡ I

Note I times any vector is a bivector

Ie1 = e2e2, Ie2 = e3e1, Ie3 = e1e2

Again, look at the properties of this trivector, I on squaring

I2 = (e1e2e3)(e1e2e3) = e1e1e2e3e2e3 = −(e1e1)(e2e2)(e3e3) = −1

So, we have another real geometric object which squares to -1 !
Indeed there are many such objects which square to −1 ; this
means that we seldom have need for complex numbers....
Call the highest grade object in the space the pseudoscalar –
unique up to scale



Reflections

As seen in earlier talks, reflections are very easy to implement in
GA
Consider reflecting a vector a in a plane with unit normal n , the
reflected vector a′ is given by:

a′ = −nan

This can easily be seen via

2(n∧a)n = (na−an)n = nan−a

and therefore

2(n∧a + n·a)n = 2nan
= 2(a·n)n + nan − a

and so

−nan = a− 2(n·a)n



Rotations
For many applications rotations are also an extremely important
aspect of GA – first consider rotations in 3D:
Recall that two reflections form a rotation:

a 7→ −m(−nan)m = mnanm

We therefore define our rotor R to be

R = mn and rotations are given by a 7→ RaR̃

Note that this is a geometric product!
The operation of reversion is the reversing of the order of
products, eg

R̃ = nm and therefore RR̃ = 1

Works in spaces of any dimension or signature. Works for all
grades of multivectors

A 7→ RAR̃



Rotations cont...

A rotor, R, is therefore an element of the algebra and can also be
written as the exponential of a bivector.

R = e−B, B = Inθ/2

R = cos
θ

2
− In sin

θ

2

The bivector B gives us the plane of rotation (cf Lie groups and
quaternions). A rotor is a scalar plus bivector.
Comparing with quaternions

q = a0 + a1i + a2j + a3k i2 = j2 = k2 = ijk = −1

i = Ie1, j = −Ie2 k = Ie3



An Algebra for Spacetime I

Aim — to construct the geometric algebra of spacetime. Invariant
interval is

s2 = c2t2 − x2 − y2 − z2

Work in natural units, c = 1.
Need four vectors {e0,ei}, i = 1 . . . 3 with properties

e0
2 = 1, ei

2 = −1
e0·ei = 0, ei ·ej = −δij

Summarised by

eµ·eν = diag(+ − − −) = Minkowski metric ηµν , µ, ν = 0 . . . 3

Bivectors
4× 3/2 = 6 bivectors in algebra. Two types

1 Those containing e0, e.g. {ei∧e0},
2 Those not containing e0, e.g. {ei∧ej}.



An Algebra for Spacetime II

For any pair of vectors a and b, with a·b = 0, have

(a∧b)2 = abab = −abba = −a2b2

The two types have different squares
Spacelike Euclidean bivectors satisfy

(ei∧ej )
2 = −ei

2ej
2 = −1

and generate rotations in a plane
Timelike bivectors satisfy

(ei∧e0)2 = −ei
2e0

2 = 1

and generate hyperbolic geometry e.g.:

eαe1e0 = 1 + αe1e0 + α2/2! + α3/3! e1e0 + · · ·
= coshα + sinhαe1e0

Crucial to treatment of Lorentz transformations (more below)



An Algebra for Spacetime III

THE PSEUDOSCALAR

Define the pseudoscalar I

I = e0e1e2e3

Since I is grade 4, it has

Ĩ = e3e2e1e0 = I

Compute the square of I :

I2 = I Ĩ = (e0e1e2e3)(e3e2e1e0) = −1

Multiply bivector by I, get grade 4− 2 = 2 — another bivector.
Provides map between bivectors with positive and negative
square:

Ie1e0 = e1e0I = e1e0e0e1e2e3 = −e2e3



An Algebra for Spacetime IV

Have four vectors, and four trivectors in algebra. Interchanged by
duality

e1e2e3 = e0e0e1e2e3 = e0I = −Ie0

NB I anticommutes with vectors and trivectors. (In space of even
dimensions). I always commutes with even-grade.
Now at this point we settle on a given fixed Cartesian frame of
vectors in which to do our physics — can think of this as the
laboratory frame, and rename our eµ to be γµ
Now have available the basic tool for the relativistic physics —
the STA

1 {γµ} {γµ∧γν} {Iγµ} I = γ0γ1γ2γ3

1 4 6 4 1
scalar vectors bivectors trivectors pseudoscalar



An Algebra for Spacetime V

The spacetime algebra or STA. Using the new name {γµ} for
preferred orthonormal frame.
From γµ·γν = ηµν we see that the {γµ} satisfy

γµγν + γνγµ = 2ηµν

This is the Dirac matrix algebra!
Explains notation, but {γµ} are vectors, not a set of matrices in
‘isospace’.
Each inertial frame defines a set of relative vectors.
These are spacetime areas swept out while moving along the
velocity vector of the frame.

γ0

γi

γ′i
σi



An Algebra for Spacetime VI

We define σi = γiγ0

These are actually spacetime bivectors, but can function as
spatial vectors in the frame orthogonal to γ0 — call these relative
vectors where the relative bit means relative to the velocity vector
of the frame
Easy to show from what we’ve already defined that they satisfy

σi ·σj = 1
2 (γiγ0γjγ0 + γjγ0γiγ0)

= 1
2 (−γiγj − γjγi ) = δij

and
1
2 (σiσj − σjσi ) = εijk Iσk

This is the algebra of the Pauli spin matrices!

σ̂1 =

(
0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)



An Algebra for Spacetime VII

And of course is also the GA of the 3-d relative space in rest
frame of γ0

A particularly nice feature is that the volume element is

σ1σ2σ3 = (γ1γ0)(γ2γ0)(γ3γ0) = −γ1γ0γ2γ3 = I

so the 3-d subalgebra shares same pseudoscalar as spacetime!
So projected onto the even subalgebra of the STA we have the
following picture:

The 6 spacetime bivectors split into relative vectors and relative
bivectors. This split is observer dependent. A very useful
technique.



Lorentz Transformations I

Usually expressed as a coordinate transformation, e.g.

x′ = γ(x− βt) t ′ = γ(t − βx)

x = γ(x′ + βt ′) t = γ(t ′ + βx′)

where γ = (1− β2)−1/2 and β is scalar velocity.
Position vector x decomposed in two frames, {eµ} and {e′µ},

x = xµeµ = xµ′e′µ

(An aside: Relation of coordinates to these frames comes from
the notion of reciprocal frame.
Given the frame {eµ} we define the reciprocal frame {eµ} via

eµ·eν = δµν



Lorentz Transformations II

So e.g. γ i = −γi , (i = 1,2,3), and γ0 = γ0. With these definitions
then

xµ = x ·eµ

and so t = e0·x , t ′ = e0′·x

Very useful for working with curvilinear coordinates in particular,
and articulates well with Geometric Calculus)
Concentrating on the 0, 1 components:

te0 + xe1 = t ′e′0 + x′e′1,

Derive vector relations

e′0 = γ(e0 + βe1), e′1 = γ(e1 + βe0).



Lorentz Transformations III

Gives new frame in terms of the old. Now introduce ‘hyperbolic
angle’ α,

tanhα = β, (β < 1),

Gives
γ = (1− tanh2α)−1/2 = coshα.

Vector e′0 is now

e′0 = ch(α)e0 + sh(α)e1
= (ch(α) + sh(α)e1e0)e0 = eα e1e0e0,

Similarly, we have

e′1 = ch(α)e1 + sh(α)e0 = eα e1e0e1.



Lorentz Transformations IV

Two other frame vectors unchanged. Relationship between the
frames is

e′µ = ReµR̃, eµ′ = ReµR̃, R = eα e1e0/2.

Same rotor prescription works for boosts as well as rotations!

Spacetime is a unified entity now.

Generalise this to R = eB where B is any bivector in the
Spacetime Algebra.

This rotor provides general Lorentz transformations.

Given any object M in the algebra, we rotate it with M ′ = RMR̃

Very simple! Eg.:



The Electromagnetic Field Strength I

Want to illustrate how useful this version of the Lorentz
transformations is in electromagnetism, by looking at the
electromagnetic field strength, or Faraday.
Tensor version is rank-2 antisymmetric tensor Fµν . As a matrix,
has components

Fµν =


0 −Ex −Ey −Ez

Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0


Often see this, but it hides the natural complex structure. In our
version, F is a spacetime bivector. We generate it from the
electric and magnetic fields E and B, which are relative vectors
in the 3-space orthogonal to the time axis γ0 (and therefore
bivectors in the full STA), via the very simple

F = E + IB



The Electromagnetic Field Strength II

which we can relate to the matrix elements via

Fµν = (γν∧γµ)·F

Since γ0Fγ0 = (−E + IB), we can recover E and IB individually
from

E = 1
2 (F − γ0Fγ0)

IB = 1
2 (F + γ0Fγ0)

Split into E and IB depends on observer velocity (γ0). Different
observers measure different fields.
Second observer, velocity v = Rγ0R̃, comoving frame
γ′µ = RγµR̃
Measures components of electric field

E ′i = (γ′i γ
′
0)·F = (Rσi R̃)·F = σi ·(R̃FR)

Same transformation law as for vectors. Very efficient. E.g.



The Electromagnetic Field Strength III

Stationary charges in γ0 frame set up field

F = E = Exσ1 + Eyσ2

Second observer, velocity tanhα in γ1 direction, so

R = eασ1/2

Measures the σi components of

R̃FR = e−ασ1/2Feασ1/2 = Exσ1 + Ey e−ασ1σ2

Gives
E ′x = Ex , E ′y = ch(α)Ey , B′z = −sh(α)Ey

If you’ve ever tried this in the conventional approach, you’ll know
the approach here is much simpler than working with tensors!



The derivative

To get further in physics and electromagnetism, we need an
additional entity, a derivative operator
We define this via the reciprocal frame discussed above
If {eµ} is a frame, then the reciprocal frame {eν} is defined by

eν ·eµ = δνµ

Note these are vectors, just like the eµ — don’t belong to e.g. a
1-form space
With eµ = γµ use these to define the vector differential operator
for spacetime

∇ ≡ γµ ∂

∂xµ
≡ γµ∂µ

(As a quick encouragement, with just this object and the STA,
can basically do all of Electromagnetism (EM) and Quantum
mechanics through to Electroweak theory without introducing
any further new mathematics!)



The derivative contd.
The definition of ∇ above did not need to use rectangular
coordinates and the orthonormal system {γµ}
Instead, suppose we have an arbitrary coordinate system {xµ},
e.g. standard polars in spacetime (t , r , θ, φ)

If we let x be the 4-d position vector, then the following two
frames are reciprocal

eµ = ∂µx , eν = ∇xν , i.e. they satisfy eν ·eµ = δνµ

Note the geometric object ∇ is given by eµ ∂
∂xµ = eµ∂µ in this

system
Secondly, for any vector field a(x), the upstairs and downstairs
components are just

aµ ≡ a·eµ and aµ = a·eµ

These statements look trivial, but are enough to do everything
associated with vector calculus in curvilinear coordinate systems
Again, this is a great saving in time and effort



Electromagnetism I

Relative to a particular frame with timelike velocity γ0, the
spactime vector derivative

∇ = γµ
∂

∂xµ
= γµ∂µ

splits as
∇γ0 = ∂t − σi∂i = ∂t −∇

where ∇ is the relative (3-d) vector derivative
Maxwell’s equations are:

∇ · E = ρ ∇ · B = 0

∇ ∧ E = ∂t (IB) ∇ ∧ B = I(J + ∂tE)

Using the geometric product, these reduce to

∇(E + IB) + ∂t (E + IB) = ρ− J



Electromagnetism

If we define the Lorentz-covariant field strength F = E + IB and
current J = (ρ+ J)γ0, we obtain the single, covariant equation

∇F = J

The advantage here is not merely
notational - just as the geometric product
is invertible, unlike the separate dot and
wedge product, the geometric product
with the vector derivative is invertible (via
Green’s functions) where the separate
divergence and curl operators are not
This led to the development of a new
method for calculating EM response of
conductors to incoming plane waves
Was possible to change the illumination
in real time and see the effects



Electromagnetism

For more detailed example want to consider radiation from a
moving charge
David Hestenes pioneered the techniques on this some years
ago
Think final form for the Faraday is the most compact, and
informative, of any that have been achieved
Since ∇∧ F = 0, we can introduce a vector potential A such that
F = ∇∧ A
If we impose ∇ · A = 0, so that F = ∇A, then A obeys the wave
equation

∇F = ∇2A = J



Point Charge Fields

Since radiation doesn’t travel
backwards in time, we have
the electromagnetic influence
propagating along the future
light-cone of the charge.

An observer at x receives an influence from the intersection of
their past light-cone with the charge’s worldline, x0, so the
separation vector down the light-cone X = x − x0 is null.
Fully covariant expression for the Liénard-Wiechert potential is
then found to be

A =
q

4π
v

X · v

This is true no matter how complicated the motion



Point Charge Fields

Now we want to find F = ∇A
One needs a few differential
identities
Following is perhaps most interesting
Since X 2 = 0,

0 = ∇̊(X̊ · X ) = ∇̊(x̊ · X )− ∇̊( ˚x0(τ) · X )

= X − γµ(X · ∂µx0(τ))

= X − γµ(X · (∂µτ)∂τx0)

= X − (∇τ)(X · v)

⇒ ∇τ =
X

X · v
(∗)

where we treat τ as a scalar field,
with its value at x0(τ) being extended
over the charge’s forward light-cone

Proceeding using this
result, and defining

Ωv = v̇∧v

which is the
acceleration bivector,
then result for F itself
can be found relatively
quickly



Point Charge Fields

F =
q

4π
X ∧ v + 1

2 XΩv X
(X · v)3

Equation displays clean split into Coulomb field in rest frame of
charge, and radiation term

Frad =
q

4π

1
2 XΩv X
(X · v)3

proportional to rest-frame acceleration projected down the null
vector X .
X · v is distance in rest-frame of charge, so Frad goes as
1/distance, and energy-momentum tensor T (a) = − 1

2 FaF drops
off as 1/distance2. Thus the surface integral of T doesn’t vanish
at infinity - energy-momentum is carried away from the charge by
radiation.



Point Charge Fields

For a numerical solution:
Store particle’s history (position, velocity,
acceleration)
To calculate the fields at x , find the null
vector X by bisection search (or similar)
Retrieve the particle velocity, acceleration at
the corresponding τ - above formulae give
us A and F



Quantum Theory I

The algebraic structure of wave mechanics arises naturally from
the geometric algebra of spacetime
Allows us to reformulate standard QM in more geometrical way
Also suggests new lines of interpretation ...
Look at Pauli spinors.

This works conventionally by regarding the Pauli matrices as being
matrix operators on column vectors, the latter being the Pauli spinors.
Pauli matrices are

σ̂1 =

(
0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
Matrix operators (with hats). The {σ̂k} act on 2-component Pauli

spinors

|ψ〉 =

(
ψ1
ψ2

)
ψ1, ψ2 complex
|ψ〉 in two-dimensional complex vector space



Quantum Theory II

In GA approach, something rather remarkable happens, we can
replace both objects (operators and spinors), by elements of the
same algebra. Thus spacetime objects, and relations between
them, can replace all (single particle) quantum statements!
Crucial aspect we have to understand is how to model the Pauli
and Dirac spinors within STA. For Pauli spinors (2 complex
entries in the column spinor), we put ψ1 = a0 + ia3,
ψ2 = −a2 + ia1 (a0, . . . ,a3 real scalars) and then the translation
(conventional on left, STA on right) is

|ψ〉 =

(
a0 + ia3

−a2 + ia1

)
↔ ψ = a0 + ak Iσk (1)

For spin-up |+〉, and spin-down |−〉 get

|+〉 ↔ 1 |−〉 ↔ −Iσ2 (2)



Quantum Theory III

Action of the quantum operators {σ̂k} on states |ψ〉 has an
analogous operation on the multivector ψ:

σ̂k |ψ〉 ↔ σkψσ3 (k = 1,2,3).

σ3 on the right-hand side ensures that σkψσ3 stays in the even
subalgebra
Verify that the translation procedure is consistent by
computation; e.g.

σ̂1|ψ〉 =

(
−a2 + ia1

a0 + ia3

)
translates to

−a2 + a1Iσ3 − a0Iσ2 + a3Iσ1 = σ1ψσ3.



Quantum Theory IV

Also need translation for multiplication by the unit imaginary i . Do
this via noting

σ̂1σ̂2σ̂3 =

(
i 0
0 i

)
See multiplication of both components of |ψ〉 achieved by
multiplying by the product of the three matrix operators.
Therefore arrive at the translation

i |ψ〉 ↔ σ1σ2σ3ψ(σ3)3 = ψIσ3.

Unit imaginary of quantum theory is replaced by right
multiplication by the bivector Iσ3. (Same happens in Dirac case.)
Now define the scalar

ρ ≡ ψψ̃.



Quantum Theory V

The spinor ψ then decomposes into

ψ = ρ1/2R,

where R = ρ−1/2ψ.
The multivector R satisfies RR̃ = 1, so is a rotor. In this
approach, Pauli spinors are simply unnormalised rotors!
Turns out Hermitian adjoint corresponds to reversion followed by
reflection in time axis in general, so in 3d have the simple
relation: ψ† = ψ̃

Quantum inner product is given by

〈ψ|φ〉 ↔ 〈ψ†φ〉 − 〈ψ†φIσ3〉Iσ3

which projects out the 1 and Iσ3 components of ψ†φ
(Note the angle brackets in the GA algebra on the right are
instructions to ‘take the scalar part’.)

This view offers a number of insights.



Quantum Theory VI

Expectation value of spin in k -direction is

〈ψ|σ̂k |ψ〉 ↔ 〈ψ†σkψσ3〉 − 〈ψ†σkψI〉Iσ3

= 〈σkψσ3ψ
†〉

since ψ†σkψ is a vector.
Defining the spin vector,

s =
1
2
~ψσ3ψ

†

this reduces to

〈ψ|ŝk |ψ〉 ↔
1
2
~〈σkψσ3ψ

†〉 = σk · s

So “forming the expectation value of the sk operator” reduces to
projecting out the σk component of the vector s



Quantum Theory VII

Using the ‘scaled rotor’ deomposition of ψ above we have

s =
1
2
~ρRσ3R̃.

The double-sided construction of the expectation value contains
an instruction to rotate the fixed σ3 axis into the spin direction
and dilate it
Also, suppose that the vector s is to be rotated to a new vector
R0sR̃0. The rotor group combination law tells us that R
transforms to R0R.
This induces the spinor transformation law

ψ 7→ R0ψ.

This explains the ‘spin-1/2’ nature of spinor wave functions
Picking out σ3 doesn’t break the rotational symmetry of the
theory. In rigid-body dynamics, we often choose an arbitrary
reference configuration, and formulate the dynamics in terms of
the transformation needed to rotate this configuration to the
physical one



Quantum Theory VIII

Relate the vector position of points in the moving body y(t) back
to a fixed ‘reference’ body.

RIGID-BODY DYNAMICS

Our first major application of GA. Have a rigid body moving

through space. Relate the vector position of points in the

moving body ���� back to a fixed ‘reference’ body.

�

�����

�

����

�� is the position in space of the centre of mass. Have

���� � ����� 
���� 	 �����

Places the rotational motion in the time-dependent rotor ����.

Next need an expression for the angular velocity. This must be

a bivector as well. Suppose the frame ���� is rotating in

space. Relate to a fixed orthonormal frame ���� by

�� � ������ 
����

Angular momentum vector � is usually defined by

��� � �������� � �	 ���� � ��	�����

13

We let x0 be the position in space of the centre of mass. Have

y(t) = R(t)xR̃(t) + x0(t)

Places the rotational motion in the time-dependent rotor R(t).
The situation quantum mechanically is analogous - we could
have chosen any constant vector, and made ψ so that it
transformed this into s



Quantum Theory IX

Worth spending a bit more time on this analogy. Let’s look at
what happens next in rigid body theory in GA, and then relate
typical solutions to QM

We extract inertia tensor I

I(B) =

∫
d3x ρx∧(x ·B)

A linear function mapping bivectors to bivectors.



Quantum Theory X

�

�

� �
���

�������

The body rotates in the � plane, at angular frequency ���.

The momentum density is ����. Angular momentum density

is ��������. Integrate to get the total, ����, expressed in

the reference body. Rotate to


 � 	����� �	

���� will lie in the same plane as � if � is perpendicular to

one of the principal axes

Now �
 � � (the couple as a bivector), so form

�
 � �	����� �	 �	�����
��	 �	�� ���� �	

� 		�� �����
�

�
������� �

�

�
������� 
 �	

� 		�� ����� ��������
 �	


Have introduced the extremely useful commutator product

��� � �

�
��� ����

3

The body rotates in the B plane, at angular frequency |B|. The
momentum density is ρx ·B. Angular momentum density is x∧(ρx ·B).
Integrate to get the total, I(B), expressed in the reference body.
Rotate to

L = RI(ΩB)R̃

Very quick to show that The torque-free equation L̇ = 0 reduces to

I(Ω̇B)− ΩB×I(ΩB) = 0 (∗)

where we have introduced the extremely useful commutator product



Quantum Theory XI

A×B = 1
2 (AB − BA)

So (*) is the Euler equations for rigid body motion
The usefulness of the GA approach extends not just to the quick
derivation, but to solutions.
Align the body frame {ek} with the principal axes, with moments
of inertia ik , k = 1 . . . 3.
If we define two constant precession rates and directions

Ωl =
1
i1

L, Ωr = ω3
i1 − i3

i1
Ie3

the Euler equation becomes the rotor equation

Ṙ = − 1
2 ΩlR − 1

2 RΩr

which integrates immediately to

R(t) = exp(− 1
2 Ωl t)R(0) exp(− 1

2 Ωr t)



Quantum Theory XII

Fully describes the motion of a symmetric top. An ‘internal’
rotation in the e1e2 plane (a symmetry of the body), followed by a
rotation in the angular-momentum plane
Example video illustrating this is by Christian Perwass
Now come back to quantum mechanics, and suppose that the
particle is placed in a magnetic field, and that all of the spatial
dynamics has been separated out.
Conventionally we introduce the Hamiltonian operator

Ĥ = − 1
2γ~Bk σ̂k = −µ̂k Bk .

The spin state at time t is then written as

|ψ(t)〉 = α(t)| ↑〉+ β(t)| ↓〉,

with α and β general complex coefficients



Quantum Theory XIII

The dynamical equation for these coefficients is given by the
time-dependent Schrödinger equation

Ĥ|ψ〉 = i~
d |ψ〉
dt

.

This equation can be hard to analyse, conventionally, because it
involves a pair of coupled differential equations for α and β
Instead, let us see what the Schrödinger equation looks like in
the geometric algebra formulation.
Get the very simple

ψ̇ = 1
2γBk Iσkψ = 1

2γIBψ,

where B = Bkσk

If we now decompose ψ into ρ1/2R we see that

ψ̇ψ† = 1
2 ρ̇+ ρṘR† = 1

2ργIB.



Quantum Theory XIV

The right-hand side is a bivector, so ρ must be constant. This is
to be expected, as the evolution should be unitary. The dynamics
now reduces to

Ṙ = 1
2γIBR,

so the quantum theory of a spin-1/2 particle in a magnetic field
reduces to a simple rotor equation
Recovering a rotor equation explains the difficulty of the
traditional analysis based on a pair of coupled equations for the
components of |ψ〉
This approach fails to capture the fact that there is a rotor
underlying the dynamics
Solutions are simple as well
Suppose that B is a constant field. The rotor equation integrates
immediately to give

ψ(t) = eγIBt/2ψ0.



Quantum Theory XV

The spin vector s therefore just precesses in the IB plane at a
rate ω0 = γ|B|
Even this simple result is rather more difficult to establish when
working with the components of |ψ〉
Now let’s make the transition to relativistic theory

Dirac Theory
In the relativistic theory of spin- 1

2 particles, things are similar
We’ll look later at the specific nature of the Dirac wavefunction,
but basically it now consists of all elements of the even
subalgebra of the STA
Instead of the wavefunction being a weighted spatial rotor, it’s
now a full Lorentz spinor:

ψ = ρ1/2eIβ/2R

with the addition of a slightly mysterious β term related to
antiparticle states



Quantum Theory XVI

Five observables in all, including the current,
J = ψγ0ψ = ρRγ0R̃, and the spin vector s = ψγ3ψ = ρRγ3R̃

The wavefunction obeys the Dirac equation. Here it is in the form
first proposed by David Hestenes:

∇ψIσ3 − eAψ = mψγ0



Quantum Theory XVII

This implies that the current J is conserved,

∇ · J = 0

with the implication that a fermion cannot be created or
destroyed (pair annihilation / production are high-energy
multiparticle processes, not covered by the Dirac equation)
The timelike component of J is positive definite, and is interpreted
as a probability density: a normalised wavefunction has∫

d3x J0 = 1

Conservation of J implies that the probability density “flows”
along non-intersecting streamlines - useful for visualisation.



Dirac Theory

A sample application - Stern-Gerlach apparatus
Apply a delta-function magnetic field gradient to simulate the
apparatus, and numerically calculate the effect of this shock on a
wave-packet, with spin initially orthogonal to the magnetic field
Result : the wave-packet splits into two parts, spins
aligned/anti-aligned with the magnetic shock, with streamlines
bifurcating depending on where they are in the wave-packet
Instead of viewing the device as ‘measuring’ the spin in z
direction, and obtaining one of two eigenstates, the apparatus
acts as a spin polariser, forcing the spins to align with the
magnetic shock



Dirac Theory
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Streamlines



Dirac Theory
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Spin Orientation



Gauge Theory Gravity

So next we get to gravity!
Want to consider a version of gravity that aims to be as much like
our best descriptions of the other 3 forces of nature:

The strong force (nuclei forces)
The weak force (e.g. radioactivity etc.)
electromagnetism

These are all described in terms of Yang-Mills type gauge
theories (unified in quantum chromodynamics) in a flat
spacetime background
In the same way, Gauge Theory Gravity (GTG) is expressed in a
flat spacetime
The key question is what we are gauging. We choose this to be
Lorentz rotations at a point, and the ability to carry out an
arbitrary remapping from one spacetime point to another
Why should we want this?
Find that the Dirac equation and Dirac spinors is probably the
easiest place to start



Gauge Theory Gravity

Take spinors (i.e. Dirac wavefunctions) ψ1(x) and ψ2(x). A
sample physical statement is

ψ1(x) = ψ2(x)

i.e. at a point where one field has a particular value, the second
field has the same value.
This is independent of where we place the fields in the STA.
Could equally well introduce two new fields

ψ′1(x) = ψ1(x ′), ψ′2(x) = ψ2(x ′),

with x ′ an arbitrary function of x . Equation ψ′1(x) = ψ′2(x) has
precisely the same physical content as original
Same is true if act on fields with a spacetime rotor

ψ′1 = Rψ1, ψ′2 = Rψ2

Again, ψ′1 = ψ′2 has same physical content as original equation
Only thing for which this doesn’t work is derivatives



Gauge Theory Gravity

E.g., suppose R in rotation case is a function of position
then

∇ (Rψ) = (∇R)ψ + ∇̇Rψ̇ 6= R (∇ψ)

(here the dots indicate what the ∇ is operating on). We’ve failed
to achieve a covariant operation in at least two ways
Also position remapping won’t work with derivatives, since if
x 7→ f (x) (we call this a position gauge change), then it turns out
that

∇xφ
′(x) = f (∇x′φ(x ′))

where the linear function f (a) is given by f (a) = a·∇f (x), and f
denotes the adjoint function.
I.e. an extraneous f gets in the way of covariance here
We solve all these problems by introducing two gauge fields
h(a) — a vector field — and Ω(a) — a bivector field



Gauge Theory Gravity (contd.) I

h(a): this is defined to have the transformation property
h(a) 7→ h

(
f
−1

(a)
)

under the position gauge change, so it’s able

to soak up the extraneous f if we use it to ‘protect’ each
derivative operator ∇, i.e. we henceforth use h(∇) instead of ∇
Ω(a): this allows Lorentz rotations (e.g. like ψ 7→ Rψ) to be
gauged locally (rotation gauge change). The transformation
property needed for this is

Ω(a) 7→ Ω′(a) = RΩ(a)R̃ − 2a·∇RR̃

Covariant derivative in a direction (for a quantity transforming
double-sidedly) is

Da ≡ a·∇+ Ω(a)×

where the× means the GA commutator product

A×B ≡ 1
2 (AB − BA)



Gauge Theory Gravity (contd.) II

Turns out that the properties of the × operator (basically, it
satisfies Jacobi identity) together with fact Ω(a) is a bivector
mean that Da is a scalar operator and satisfies Leibniz rule for
derivatives

Get full vector covariant derivative via D ≡ h(∂a)Da

∂a is the multivector derivative w.r.t. a

Haven’t got time for details, but multivector derivative by a vector
a, given, in a frame in which a = aµeµ, by

∂a ≡ eµ
∂

∂aµ



Gauge Theory Gravity (contd.) III

For a general n-d space, and acting on a grade-r object, these
satisfy

∂aa·Ar = rAr

∂aa∧Ar = (n − r)Ar

and ∂aAr a = (−1)r (n − 2r)Ar

Note the last of these means that if we differentiate a vector
through a bivector, in 4d, the result vanishes. Not obvious, but
this turns out to be the key to why e.g. electromagnetism is a
massless theory in 4d, and also being able to demonstrate how
the Riemann tensor for a black hole works! (see shortly)



Gauge Theory Gravity (contd.) IV

Returning to gravity, the field strength tensor got by commuting
covariant derivatives:

[Da,Db]M = R(a∧b)×M (M some multivector field)

This leads to the Riemann tensor

R(a∧b) = a·∇Ω(b)− b·∇Ω(a) + Ω(a)×Ω(b)

from which we make a fully covariant version R(B) = Rh(B)

Note this is a mapping of bivectors to bivectors — just like the
inertia tensor!
Ricci scalar (rotation gauge and position gauge invariant) is

R = (∂b∧∂a) ·R(a∧b)

Simplest gravitational action to use is then Lgrav = det h−1R



Gauge Theory Gravity (contd.) V

The dynamical variables are h(a) and Ω(a) and field equations
correspond to taking ∂h(a) and ∂Ω(a)

That’s it! Further details and full description in Lasenby, Doran &
Gull, Phil.Trans.Roy.Soc.A. (1998), 356, 487
Now what theory do we obtain in this way?
Locally, theory reproduces predictions of an extension of General
Relativity (GR) known as Einstein-Cartan theory (incorporates
quantum spin)
Differs on global issues such as nature of horizons, and topology
Advantages of GTG include being clear about what the physical
predictions of the theory are (since a gauge theory) — they are
the quantities that are gauge-invariant!
Conceptually simpler than standard GR (since works in a flat
space background)



Gauge Theory Gravity (contd.) VI

Also simpler in a practical sense, since if you have a computer
algebra program that can do Clifford algebra in spacetime, then
you can immediately start exploring gravity — this is a lot of fun!
— don’t need a tensor calculus program, or indeed any extension
to curved space!
Also articulates very well with Dirac equation (in Hestenes form)

What do the equations of motion and solutions look like?
Equations of motion in absence of matter are

∂aR(a∧b) = 0, D∧h(a) = 0 Pretty simple!

All the symmetries of the Riemann that one encounters
conventionally are encoded in the ∂a∧R(a∧b) = 0 part of the first
equation, and the second equation effectively says that the
torsion vanishes in this case



Black holes

So how do black holes look in
this approach?
Just like setting up EM
equations for a point charge,
we need to choose a gauge
and work from there

We would like a gauge (choice of h-function) that covers all of
(flat) space, except possibly a singularity at the origin
Again, just like EM, we would expect the field strength tensor to
be the same, and not depend on our choice of gauge
Denoting er as the unit radial vector, et = γ0 as the unit time
vector and the radial null vector e− = et − er , then two good
choices for h are

h(a) = a−
√

2M
r

(a·er )et and h(a) = a +
M
r

(a·e−)e−

We call the first the Newtonian gauge since a lot of the physics
looks very Newtonian-like in this gauge, and the second is the
GTG analogue of the Advanced Eddington-Finkelstein metric
(good for treating photons)



Black holes

Both are pretty simple!
They both lead to the Riemann tensor

R(B) = − M
2r3 (B + 3σr Bσr )

where σr = er et is the unit spatial bivector in the radial direction
We can immediately check the field equation ∂aR (a∧b) = 0 is
satisfied
Using the results for the ∂a derivative above, we have

∂a (a∧b + 3σr (a∧b)σr ) = 3b+3∂a (σr (ab − a·b)σr ) = 3b−3bσ2
r = 0

where the result that differentiating a vector through a bivector
gives zero (here ∂̇aσr ȧ = 0), is a crucial step
This is quite impressive as regards compactness and ease of
working
Even more impressive is doing the same for a rotating black hole
— the Kerr solution



Rotating black holes
Here if the black hole has angular momentum parameter L, we
find

R(B) = − M

2 (r + IL cos θ)3 (B + 3σr Bσr )

i.e. we get from the Schwarzschild (non-rotating) black hole via
r 7→ r + IL cos θ

Explains the complex structure previously noticed in the Kerr
solution, but in terms of the spacetime pseudoscalar I
Notice we don’t need to do any more work to show that
∂aR (a∧b) = 0 is satisfied — follows from what we did in the
Schwarzschild case, since ∂aI = −I∂a

Of course quite a lot of work necessary to get from an h-function
to Riemann in this case, but this is certainly the most compact
form of Riemann for the Kerr I’ve ever seen (most authors don’t
even try to write down the Riemann components!)
Also, using GA methods, Chris Doran was able to find a compact
h-function gauge for the Kerr which is similar to the Newtonian
gauge form for Schwarzschild — metric form of this known as the
Doran metric



The GTG approach to gravitational waves I

Going to give a very abbreviated version of this!
Start with a plane analogue of the Advanced Eddington
Finklestein h-function discussed above: h(a) = a + M

r (a·e−)e−,
where e− = et − er

For a gravitational wave propagating in the z direction, the
answer is

h(a) = a− 1
2 H a·e+ e+

where e+ = et + ez , and H = H(t , x , y , z) is a scalar function of
spacetime position
This is all we need!
A remarkable feature is that despite being very simple, this
provides an exact solution for gravitational waves
With the ansatz H(t , x , y , z) = G(η)f (x , y), where η ≡ t − z, find
that ∂aR (a∧b) = 0 is satisfied provided the 2d Laplacian
∇2f = 0



The GTG approach to gravitational waves II

Using polar coords (ρ, φ) for the 2d (x , y) plane, the solutions of
∇2f = 0 that are picked out as giving homogenous values for the
Riemann (i.e. the same all over the plane wavefront) are

f = ρ2 cos 2φ and f = ρ2 sin 2φ

Borrowing some freedom from G(η), we get the final form of
Riemann:

R(B) = 1
2 G(η) (e+e⊥)B(e+e⊥)

where e⊥ = cos(φ0(η))ex + sin(φ0(η))ey is the arbitrary
polarization direction in the (x , y) plane
This is very neat in showing us how the input bivector B is
reflected in the bivector e+e⊥, which encodes both the direction
of propagation in spacetime, and the direction of polarization



The GTG approach to gravitational waves III

The way that the polarization
angle is given by φ0, whereas
the solution for H and the
components of the Riemann
rotate through 2φ0, is of
course a consequence of the
‘spin-2’ nature of gravitational
radiation, and it is interesting
to see it arising here due to
the fact we are reflecting in
the polarization direction

Input B
Output B

e⊥

θθ′

θ′ = θ + 2φ0

Notice how simple it is to see that the field equation
∂aR (a∧b) = 0 is satisfied
The ‘pulse’ G(η) is just a scalar term, so we need

∂a (e+e⊥(a∧b)e⊥e+) = ∂a (e+e⊥(ab − a·b)e⊥e+)

= −be+e⊥e⊥e+ = be+e+ = 0

since e+ is null



The GTG approach to gravitational waves IV

So how does our version of gravitational waves compare with the
conventional approach?
Turns out it gives a quite different view of them (the ‘gauge’ is
very different from what’s used conventionally), and since it is
exact, even recovers some physics that had been ignored or
misunderstood in the conventional treatments
This concerns something called ‘velocity memory’
Conventionally, after a wave passes through e.g. a ring of
particles, they return to where they were

ζ 

1

ζ 

2



The GTG approach to gravitational waves V

In our approach, find that the wave imparts
a net velocity to the test particle that
persists after the wave has passed
Direction of motion depends on initial
position in (x , y) plane versus polarization
angle — get some rather beautiful patterns,
and formation of caustics

These are entirely absent in the standard approach — the
linearisation loses them, so most astrophysicists didn’t know this
occurred!



The GTG approach to gravitational waves VI

The effect has now been discovered via a more conventional
approach, using exact solutions, by another group, working
independently, with their first publication coinciding with when I
first talked about the effect

(See Zhang, P.-M., Duval, C., Gibbons, G. W., and Horvathy, P.
A.: The memory effect for plane gravitational waves, Physics
Letters B 772, 743 (2017), arXiv: 1704.05997, and subsequent
papers)

Great deal of research likely to concentrate in this area in the
near future



Progression towards electroweak and strong forces I
Now want to progress towards the other two forces —
electroweak and strong
Starting point in this approach is Dirac spinor ψ
We saw gravitational forces arise by gauging rotor
transformations of ψ at the left

ψ 7→ Rψ

where R is a Lorentz rotor, and from demanding invariance
under remappings of spacetime (translations)
Latter lead to the h(a) vector functions we discussed above,
which make derivatives covariant (use h(∇) instead of ∇)
In this approach, electroweak forces arise from gauging rotor
transformations of ψ at the right

ψ 7→ ψR

and invariance under pseudoscalar transformations of the form

ψ 7→ ψeαI



Spinors I

A useful item we need now are idempotents!

Consider P+ = 1
2 (1 + σ3)

We have (1 + σ3)2 = 1 + σ3 + σ3 + σ2
3 = 2 (1 + σ3), using σ2

3 = 1,
hence P2

+ = P+, i.e. is indeed an idempotent (or ‘projector’)

Similarly, if P− = 1
2 (1− σ3) , then P2

− = P− = 1
2 (1− σ3)

These idempotents enable us to create left and right handed
Weyl spinors
We can ’promote’ a Pauli spinor φ to a Weyl one by multiplying
by one of these: e.g. φ 7→ φ 1

2 (1 + σ3)

Note this means we can now apply a full Lorentz rotor at the left:
Rφ (1 + σ3)

Without the projector, this operation would take us outside the
set of Pauli spinors, which only respond properly to spatial
rotations, and wouldn’t be covariant



Spinors II

So we can now write a full Dirac spinor in terms of two Pauli
spinors, φ and ω say, as

ψ = φ 1
2 (1− σ3)− ωIσ2

1
2 (1 + σ3)

where the sign and Iσ2 in 2nd term turn out to be useful shortly.
Any Dirac spinor can be written this way

Note it has 8 (real) d.o.f., in accordance with it being the most
general even element of the STA



Electroweak theory I

We now have enough in hand to start on Electroweak theory!
This works with two sectors: left and right
The left sector is (for our purposes) Weyl spinors with the
projector P− = 1

2 (1− σ3)

Right sector uses Weyl spinors of the P+ = 1
2 (1 + σ3) kind

Neutrinos only appear in the left sector, and we call their
wavefunction

νL = −νP
L

1
2 (1− σ3)

where νP
L is a Pauli spinor

For electrons, they have both a left and right sector, which we
write

eL = eP
L

1
2 (1− σ3) , eR = −eP

R Iσ2
1
2 (1 + σ3)



Electroweak theory II

Now, perhaps surprisingly, we combine the two left-hand
components into a single Dirac wavefunction via

ψL = eL
1
2 (1− σ3)−νLIσ2

1
2 (1 + σ3) = eP

L
1
2 (1− σ3)−νP

L Iσ2
1
2 (1 + σ3)

The Iσ2 has converted the left-handed neutrino wavefunction into
something which can be used as the right hand part of a full
Dirac spinor, which combines the (left part of) the electron, and
the neutrino
From looking at the Lagrangian, we find that the symmetry we
should look for is to find all multivectors N such that when
ψL 7→ ψLeN , then ψLγ0ψ̃L, the Dirac current, is invariant
This picks out the set of bivectors which commute with γ0, i.e.
Iσ1, Iσ2 and Iσ3, and the pseudoscalar I, which reverses to itself,
but anticommutes with γ0

The action of the Iσ1, Iσ2 and Iσ3 parts is thus a ‘spatial rotor’ R,
which defines the SU(2) part of the EW transformations, and the
action of the pseudoscalar is like a ‘phase rotation’, so is U(1)



Electroweak theory III

Note: Nature seems only to take advantage of the SU(2)
symmetry for the left-handed wavefunctions
The right-handed wavefunctions only see the U(1) (duality
transformations by the pseudoscalar) part
Final object we need, is a way of coupling the left and right
sectors of the theory together
This is the role of the Higgs field
Since our spinors are transforming on the right, we can form
SU(2)-invariant inner products between them via products of the
form

〈θψ̃〉

since under the rotor transformations this transforms to

〈θR(R̃ψ̃)〉 = 〈θψ̃〉



Electroweak theory IV

The Higgs field is then a Pauli spinor H (i.e. a scaled, spatial
rotor), which we use in the middle of such a product to provide a
term which dynamically couples the left and right sectors:

〈ψRHψ̃L〉

Since the right-hand sector doesn’t transform under the SU(2)
part, clear that H must provide the missing R and transform as

H 7→ HR

itself
Looks as though this is going to be a problem (H forced to step
outside being a Pauli spinor etc.), except the rotors here are
purely spatial, so this is fine!
Note that H is completely protected against actual Lorentz or
spatial rotations in real space



Electroweak theory V

For one of these, we would have

ψR 7→ RψR , ψL 7→ RψL

and so
〈ψRHψ̃L〉 7→ 〈RψRHψ̃LR̃〉 = 〈ψRHψ̃L〉

So it’s on this basis that we see H, the Higgs particle, is a
Lorentz scalar
It’s actually a Pauli spinor, but doesn’t respond to any spacetime
transformations
Don’t have time for setting out the rest of the theory in STA, but in
terms of forming a covariant derivative and field strength tensor
things proceeds very much like what happens in ‘Gauge Theory
Gravity’
Making the symmetries local corresponds to generating new
forces, which are those of the elctroweak theory



Electroweak theory VI

Some major differences are that transformations are on the right
of the wavefunction, and only involve spatial transformations as
regards the rotor R. Also have all the issues of setting up the
correct couplings between left and right sectors

Not all details done yet, but definitely clear can all be done in the
STA

How about strong forces?



Strong forces I

These are currently being worked upon.
A model initially due to my son (Robert Lasenby), extends the
Dirac spinor ψ to be both a function of position x , and a linear
function of a bivector argument B, so ψ = ψ(B)

The separate colour fields then arise as ψi = ψ(σi ), where
σi = γiγ0, i = 1,2,3, are the unit norm spatial bivectors of the
STA we discussed above
ψ = ψ(B, x), where x is position, is intriguingly like a spinor
version of the Riemann tensor!
Recently, a definite proposal for the form of these transformations
of B has become clear, which gives a nice picture, within the
STA, of what in the particle physics version is the SU(3) group
This is that we ask for transformations of bivectors F in the STA
that keep the Hermitian inner product of F with itself invariant:

〈γ0Fγ0F 〉



Strong forces II

(Remember Hermitian adjoint is reversion followed by ‘reflection
in time axis’ and reversion for a bivector is just F 7→ −F .)
How does this work? We do this by considering double-sided
operation on F
Don’t have time to go through the details, but form these from (for
i = 1,2,3)

êi = multiplication on the left by σi , so êi (F ) = σiF

f̂i = multiplication on the right by Iσi , so f̂i (F ) = FIσi
(3)

and we claim the appropriate U(n) generators are as follows.

Êij = êi êj − f̂i f̂j , i < j

F̂ij = êi f̂j + êj f̂i , i < j

Ĵi = êi f̂i , i = 1,2,3

(4)

where there is no sum implied in the last line, i.e. each line
contains three quantities, making up the expected 9 generators
overall.



Strong forces III

We restrict to SU(3) as follows:

Let us look at the sum of the Ĵi ,

Ĵ = Ĵ1 + Ĵ2 + Ĵ3 (5)

Since σiFσi = −F (with a sum over the i), we have

Ĵ(F ) = −IF (6)

for any bivector F . Thus Ĵ acts like the generator of a global
‘phase rotation’, but where the imaginary is the pseudoscalar.
It is this part that is removed in making the transition to SU(3)
from U(n)

Basically we have to take linear combinations of the Ĵi in which
the overall sum is removed, i.e. the only combinations allowed
are of the form

α1Ĵ1 + α2Ĵ2 + α3Ĵ3, with α1 + α2 + α3 = 0 (7)



Strong forces IV

This limits the number of independent generators to 8 instead of
9, giving the right number for SU(3)

Finite forms
A really nice feature of the approach is the ease with which we can
derive finite forms of the transformations

Looking at the two individual parts of the Êij generators, i.e. êi êj ,
and f̂i f̂j , where i < j , it is clear that they mutually commute, and
each squares to −1.
Thus when we exponentiate Êij to obtain a finite transformation,
we can immediately write (with α a scalar)

exp
(α

2
Êij

)
(F ) = exp

(α
2

êi êj

)(
exp

(
−α
2

f̂i f̂j

)
(F )

)
= exp

(α
2
σiσj

)
F exp

(α
2
σjσi

)
= RijFR̃ij

(8)

where Rij is the spatial rotor exp
(
α
2 σiσj

)
, which gives rotations

through angle α about the εijkσk axis.



Strong forces V

Thus if R is a general spatial rotor (and so has three d.o.f.), we
can see that the Ê sector amounts to the set of spatial rotations
RFR̃.

For the F̂ij generators, we again have that the two parts
commute, and obtain

exp
(α

2
F̂ij

)
(F ) = exp

(α
2

êi f̂j
)(

exp
(α

2
êj f̂i
)

(F )
)

= cos2 α

2
F + 1

2 I sin
α

2
cos

α

2
(
σiFσj + σjFσi

)
+ sin2 α

2
σiσjFσjσi

(9)



Strong forces VI

To complete the set, the finite form for the Ĵi is

exp
(
αĴi

)
(F ) = cosαF + sinα I σiFσi (10)

with of course no sum on the r.h.s. For Ĵ we have

exp
(
αĴ
)

(F ) = e−αIF (11)

i.e. a global duality transformation
Still a quite lot of work to do in this setup, but confident it can be
done with wholly STA entities
But: only dealing with one generation of particles, and there are
3!
I’m fairly convinced that this will involve stepping outside the STA
to things that are more like the CGA, and in particular the spaces
either Cl(4,1) (the ‘1d-up’ CGA) or full CGA itself (Cl(2,4) in
application to spacetime)



Strong forces VII

These may have the space we need for all the generations of
particles, and possibly shed light on issues of why the left -hand
and right-hand sectors are different in electroweak

Anyway, good to know that e.g. an algebra that you are already
using for the Conformal Geometric Algebra of 3d space (Cl(4,1))
may be the key to all the forces
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Christian Perwass
Electromagnetic field-strength simulation for moving charge by
Robert Lasenby

Further reading/references
Development of GA for Physics

Space-Time Algebra, David Hestenes, Birkhauser (1966
originally, 2015 second edition)
Geometric Algebra for Physicists, Chris Doran and Anthony
Lasenby, CUP (2003)
Clifford Algebra to Geometric Calculus, David Hestenes and
Garret Sobczyk, D. Reidel (1984)
Geometric Algebra as a Unifying Language for Physics and
Engineering and Its Use in the Study of Gravity, Adv. Appl.
Clifford Algebras, 27, 733 (2017)



Some credits and references II

STA approach to Quantum Physics

Spacetime Algebra and Electron Physics, Doran et al., Advances
in Imaging and Electron Physics, 95, 271 (1996)

Gravity and Gravitational Waves

Gravity, Gauge Theories and Geometric Algebra, Anthony
Lasenby, Chris Doran and Steve Gull, R. S. Lond. Philos. Trans.
Ser. A, 356, 487 (1998)
Geometric Algebra, Gravity and Gravitational Waves, Anthony
Lasenby, Adv. Appl. Clifford Algebras, 29, 79 (2019)
The memory effect for plane gravitational waves, Zhang, P.-M.,
Duval, C., Gibbons, G. W., and Horvathy, P. A., Physics Letters B
772, 743 (2017)



Some credits and references III

Electroweak/Strong Forces
Published references are:

David Hestenes, Space-time structure of weak and
electromagnetic interactions, Foundations of Physics, Volume 12,
Issue 2, pp.153-168 (1982)
David Hestenes, Gauge Gravity and Electroweak Theory, in The
Eleventh Marcel Grossmann Meeting On Recent Developments
in Theoretical and Experimental General Relativity, Gravitation
and Relativistic Field Theories, Berlin, 2008. pp. 629-647
Also see arXiv:0807.0060 for this
Doran & Lasenby, Geometric Algebra for Physicists, Chap 13,
section 3,6 (CUP, 2003)

(Note these references don’t explicitly cover the nature of the Higgs
particle outlined here, or have an explicit model for the strong force.
These covered in unpublished drafts by Anthony and Robert Lasenby)
For a non-STA approach but still relevant to Clifford Algebra see
papers by Cohl Furey, e.g. Charge quantization from a number
operator, Cohl Furey, Phys.Lett.B, 742, 195 (2015)


