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1 The question

What is the best representation for doing euclidean geometry on computers? This

question is a fundamental one for practitioners of computer graphics, as well

as those working in computer vision, 3D games, virtual reality, robotics, CAD,

animation, geometric processing, discrete geometry, and related fields. While

available programming languages change and develop with reassuring regularity,

the underlying geometric representations tend to be based on vector and linear

algebra and analytic geometry (VLAAG for short), a framework that has remained

virtually unchanged for 100 years. These notes introduce projective geometric

algebra (PGA) as a modern alternative for doing euclidean geometry and shows

how it compares to VLAAG, both conceptually and practically. In the next

section we develop a basis for this comparison by drafting a wishlist for doing

euclidean geometry.

Why fix it if it’s not broken?. The standard approach (VLAAG) has proved

itself to be a robust and resilient toolkit. Countless engineers and developers use

it to do their jobs. Why should they look elsewhere for their needs? On the other

hand, long-time acquaintance and habit can blind craftsmen to limitations in

their tools, and subtly restrict the solutions that they look for and find. Many

programmers have had an “aha” moment when learning how to use the quaternion

product to represent rotations without the use of matrices, a representation in

which the axis and strength of the rotation can be directly read off from the

quaternion rather than laboriously extracted from the 9 entries of the matrix,

and which offers better interpolation and numerical integration behavior than

matrices.

2 Wish list for doing geometry

In the spirit of such “aha!” moments we propose here a feature list for doing

euclidean geometry. We believe all developers will benefit from a framework that:

• is coordinate-free,

• has a uniform representation for points, lines, and planes,

• can calculate “parallel-safe” meet and join of these geometric entities,

• provides compact expressions for all classical euclidean formulas and
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constructions, including distances and angles, perpendiculars and parallels,

orthogonal projections, and other metric operations,

• has a single, geometrically intuitive form for euclidean motions, one

with a single representation for operators and operands,

• provides automatic differentiation of functions of one or several variables,

• provides a compact, efficient model for kinematics and rigid body

mechanics,

• lends itself to efficient, practical implementation, and

• is backwards-compatible with existing representations including vector,

quaternion, dual quaternion, and exterior algebras.

3 Structure of these notes

In the rest of these notes we will introduce geometric algebra in general and

PGA in particular, on the way to showing that PGA in fact fulfills the above

feature list. The treatment is devoted to dimensions n = 2 and n = 3, the cases of

most practical interest, and focuses on examples; readers interested in theoretical

foundations are referred to the bibliography. Sect. 4 presents an “immersive”

introduction to the subject in the form of three worked-out examples of PGA in

action. Sect. 5 begins with a short historical account of PGA followed by a bare-

bones review of the mathematical prerequisites. This culminates in Sect. 6 where

geometric algebra and the geometric product are defined and introduced. Sect. 7

then delves into PGA for the euclidean plane, written P(R∗2,0,1), introducing most

of its fundamental features in this simplified setting. Sect. 8 introduces PGA for

euclidean 3-space, focusing on the crucial role of lines, leading up to the Euler

equations for rigid body motion in PGA. Sect. 9 describes the native support

for automatic differentiation. Sect. 10 briefly discusses implementation issues.

Sect. 11 compares the results with alternative approaches, notably VLAAG,

concluding that PGA is a universal solution that includes within it most if not

all of the existing alternatives. Finally Sect. 12 provides an overview of available

resources for interested readers who wish to test PGA for themselves.
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4 Immersive introduction to geometric algebra

The main idea behind geometric algebra is that geometric primitives behave

like numbers – for example, they can be added and multiplied, can be expo-

nentiated and inverted, and can appear in algebraic equations and functions.

The resulting interplay of algebraic and geometric aspects produces a remarkable

synergy that gives geometric algebra its power and charm. Each flat primitive –

point, line, and plane – is represented by an element of the algebra. The magic

lies in the geometric product defined on these elements.

We’ll define this product properly later on – to start with we want to first

give some impressions of what it’s like and how it behaves.

4.1 Familiar components in a new setting

To begin with it’s important to note that many features of PGA are already

familiar to many graphics programmers:.

• It is based on homogeneous coordinates, widely used in computer graphics,

• it contains within it classical vector algebra,

• as well as the quaternion and dual quaternion algebras, increasingly popular

tools for modeling kinematics and mechanics, and

• the exterior algebra, a powerful structure that models the flat subspaces of

euclidean space.

In the course of these notes we’ll see that PGA in fact resembles a organism in

which each of these sub-algebras first finds its true place in the scheme of things.

Other geometric algebra approaches. Other geometric algebras have been

proposed for doing euclidean geometry, notably conformal geometric algebra

(CGA). Interested readers are referred to the comparison article [Gun17b], which

should shed light on the choice to base these notes on PGA.

Before turning to the formal details we present three examples of PGA at

work, solving tasks in 3D euclidean geometry, to give a flavor of actual usage.

Readers who prefer a more systematic introduction can skip over to Sect. 5.
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4.2 Example 1: Working with lines and points in 3D

Task: Given a point P and a non-incident line Π in E3, find the

unique line Σ passing through P which meets Π orthogonally.1

P

Π

P

Π

Π.P

P

Π

Π.P

(Π.P)ΛΠ

P

Π

Π.P ((Π.P)ΛΠ)VP

(Π.P)ΛΠ

Figure 1: Geometric construction in PGA.

In PGA, geometric primitives such as points, lines, and planes, are represented

by vectors of different grades, as in an exterior algebra. A plane is a 1-vector, a

line is a 2-vector, and a point is a 3-vector. (A scalar is a 0-vector; we’ll meet

4-vectors in Sect. 4.4). Hence the algebra is called a graded algebra.

Each grade forms a vector space closed under addition and scalar multipli-

cation. An element of the GA is called a multivector and is the sum of such

k-vectors. The grade-k part of a multivector M is written 〈M〉k. The geometric

relationships between primitives is expressed via the geometric product that we

want to experience in this example. The geometric product ΠP, for example, of

a line Π (a 2-vector) and a point P (a 3-vector) consists two parts, a 1-vector

1In 3D PGA, lines are denoted with large Greek letters, points with large Latin letters, and
planes with small Latin ones.
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and a 3-vector.2 We write this as:

ΠP = 〈ΠP〉1 + 〈ΠP〉3

1. 〈ΠP〉1 is the plane perpendicular to Π passing through P. As the lowest-

grade part of the product, it is written as Π ·P.

2. 〈ΠP〉3 is the normal direction to the plane spanned by Π and P. We won’t

need it for this exercise.

The sought-for line Σ can then be constructed as shown in Fig. 1:

1. Π ·P is the plane through P perpendicular to Π,

2. The point (Π ·P) ∧Π) is the meet (∧) of Π ·P with Π,

3. The line Σ := ((Π ·P) ∧Π) ∨P is the join (∨) of this point with P.

The meet (∧) and joint (∨) operators are part of the exterior algebra contained

in the geometric algebra and are discussed in more detail below in Sect. 5.7.

The next two examples show how euclidean motions (reflections, rotations,

translations) are implemented in PGA.

4.3 Example 2: A 3D Kaleidoscope

Figure 2: Creating a 3D kaleidoscope in PGA using sandwich operators.

Task: A k-kaleidoscope is a pair of mirror planes a and b in E3 that

meet at an angle π
k . Given some geometry G generate the view of G

seen in the kaleidoscope.

2You are not expected at the point to understand why this is so. If you know about quaternions,
you’ve met similar behavior. Recall that the quaternion product of two imaginary quaternions
v1 := x1i + y1j + z1k and v2 := x2i + y2j + z2k satisfies: v1v2 = −v1 · v2 + v1 × v2. Hence, it
is the sum of a scalar (the inner product) and a vector (the cross product). Something similar is
going on here with the geometric product of a line and a point. We’ll see why in Sect. 6.2 below.
Sect. 6.3 also sheds light on how the quaternions naturally occur within geometric algebra.
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In PGA, a is a 1-vector. We can and do normalize this 1-vector to satisfy

a2 = 1, where a2 is the geometric product of a with itself. The geometric reflection

in plane a is implemented in PGA by the “sandwich” operator aGa (where G

may be any k-vector – plane, line or point). See Fig. 2. The left-most image

shows the setup, where G is a red tube (modeled by some combination of 1-, 2-,

and 3-vectors) stretching between the two planes. The middle image shows the

result of applying the sandwich bGb to the geometry (behind plane a one can

also see aGa, unlabeled). The fact that a2 = 1 is consistent with the fact that

repeating a reflection yields the identity. The right image shows the result of

applying all possible alternating products of the two reflections a and b to G (e.

g., baGab, etc.). Since the mirrors meet at the angle π
6 , this process closes up in

a ring consisting of 12 copies of G. (To be precise, (ab)6 = (ba)6 = 1).

Readers familiar with quaternions may recognize a similarity to the quaternion

sandwich operators that implement 3D rotations – but here the basic sandwiches

implement reflections. The next example derives sandwich operators for rotations

without using reflections.

4.4 Example 3: A continuous 3D screw motion

Task: Represent a continuous screw motion in 3D.

The general orientation-preserving isometry of E3 is a screw motion, that rotates

around a unique fixed line (the axis) while translating parallel to it. The ratio of

the translation distance to the angle of rotation (in radians) is called the pitch of

the screw motion. A rotation has pitch 0, and translation has pitch “∞”.

Figure 3: Continuous rotation, translation, and screw motion in PGA by expo-
nentiating a bivector.

The previous example already contains rotations: a reflection in a plane a

followed by a reflection in a second plane b (i. e., b(aGa)b) is a rotation around
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their common line by twice the angle between them, in this case π
3 . Here we use

a different approach to obtain a desired rotation directly from its axis of rotation.

A line in E3, passing through the point P with direction vector V, is given by the

join operation Ω := P ∨V (yellow line in Fig. 3). We can and do normalize Ω

to satisfy Ω2 = −1. (Where Ω2 means multiply Ω by itself using the geometric

product.) To obtain the rotation around Ω of angle α define the motor etΩ.

The exponential function is evaluated using the geometric product in the formal

power series of e(x); it behaves like the imaginary exponential eti since Ω2 = −1.

The sandwich operator etΩGe−tΩ implements the continuous rotation around

Ω applied to G, parametrized by t. At t = 0 it is the identity; and at t = α
2 it

represents the rotation of angle α around Ω. See the left image above, which

shows the result for a sequence of t-values between 0 and π. Readers familiar

with the quaternion representation of rotations should recognize the similarity of

these formulas. This isn’t accidental – see Sect. 11.3.4 below.

To obtain instead a translation in the direction of Ω, we used a different line,

obtained by applying the polarity operator of PGA to Ω to produce Ω⊥. Ω⊥ is

the orthogonal complement of Ω, an ideal line, or so-called “line at infinity”. It

consists of all directions perpendicular to Ω. If Ω is thought of as a vertical axis,

then Ω⊥ is the horizon line. The orthogonal complement is obtained in PGA

by multiplying by a special 4-vector, the unit pseudoscalar I: Ω⊥ := ΩI.3 A

continuous translation in the direction of Ω is then given by a sandwich with the

translator etΩ
⊥

. See the middle image above.

Let the pitch of the screw motion be p ∈ R. Then the desired screw motion

is given by a sandwich operator with the motor et(Ω+pΩ⊥). This motion can be

factored as the product of a pure rotation and a pure translation in either order:

et(Ω+pΩ⊥) = etΩetpΩ
⊥

= etpΩ
⊥
etΩ

. See image on the right above.

We hope these examples have whetted your appetite to explore further. We

now turn to a quick exposition of the history of PGA followed by a modern

formulation of its mathematical foundations.

3The pseudoscalar is one of the most powerful but mysterious features of geometric algebra.
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5 Mathematical foundations

5.1 Historical overview

Both the standard approach to doing euclidean geometry and the geometric

algebra approach described here can be traced back to 16th century France.

The analytic geometry of René Descartes (1596-1650) leads to the standard

toolkit used today based on Cartesian coordinates and analytic geometry. His

contemporary and friend Girard Desargues (1591-1661), an architect, confronted

with the riddles of the newly-discovered perspective painting, invented projective

geometry, containing additional, so-called ideal, points where parallel lines meet.

Projective geometry is characterized by a deep symmetry called duality, that

asserts that every statement in projective geometry has a dual partner statement,

in which, for example, the roles of point and plane, and of join and intersect, are

exchanged. More importantly, the truth content of a statement is preserved under

duality. We will see below that duality plays an important role in PGA.

Mathematicians in the 19th century (Cayley and Klein) showed how, using

an algebraic structure called a quadratic form, the euclidean metric could be

built back into projective space. (The same technique also worked to model the

newly discovered non-euclidean metrics of hyperbolic and elliptic geometry in

projective space.) This Cayley-Klein model of metric geometry forms an essential

foundation of PGA. While these developments were underway in geometry, William

Hamilton and Herman Grassmann discovered surprising new algebraic structures

for geometry. All these dramatic developments flowed together into William

Clifford’s invention of geometric algebra in 1878 ( [Cli78]). We now turn to

studying from a modern perspective the ingredients of geometric algebra.

5.2 Vector spaces

We assume that the reader is familiar with the concept of a real vector space of

dimension n, where n is the cardinality of a maximal linearly independent set

of elements, called vectors. Vectors are often thought of as n-tuples of numbers:

these arise through the choice of a basis for the vector space, and represent the

coordinates of that vector with respect to the basis. A vector space is closed

under addition and scalar multiplication. For each vector space V there exists

an isomorphic dual vector space V∗, consisting of dual vectors, or co-vectors. A
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Figure 4: Important figures in the development of PGA (l. to r.): Hermann
Grassmann (1809-1877), Arthur Cayley (1821-1895), Felix Klein (1849-1925),
William Clifford (1845-1879).

co-vector θ is a linear functional that can be evaluated at a vector v to produce

a real number: 〈θ,v〉 ∈ R. This evaluation map is bilinear. It is not an inner

product, that is defined on pairs of vectors. See the next section below.

Example.. When n = 3, v can be interpreted as a line through the origin and

θ, as a plane through the origin, and 〈θ,v〉 ∈ R = 0↔ v lies in the plane θ.

5.3 Normed vector spaces

A real vector space V of dimension n has no way to measure angles or distances

between elements. For that, introduce a symmetric bilinear form B : V×V→ R.

B is a map satisfying

1. B(αu1 + βu2,v) = αB(u1,v) + βB(u2,v) (bilinearity), and

2. B(u,v) = B(v,u) (symmetry).

A symmetric bilinear form B can be rewritten as an inner product on vectors:

u · v := B(u,v) and used to define a norm, or length-function, on vectors:

‖u‖ :=
√
|u · u|. Rn is a normed vector space. The next section classifies

symmetric bilinear forms.

5.4 Sylvester signature theorem

Symmetric bilinear forms of dimension n can be completely characterized by three

positive integers (p,m, z) satisfying p+m+ z = n. Sylvester’s Theorem asserts

that for any such B there is a unique choice of (p,m, z) and a basis {ei} for V

such that
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1. ei · ej = 0 for i 6= j (orthogonal basis), and

2.

ei · ei =


1 for 1 ≤ i ≤ p

−1 for p < i ≤ p+m (normalized basis)

0 for p+m < i ≤ n

Example. Taking n = 3 and (p,m, z) = (3, 0, 0) we arrive at the familiar

euclidean vector space R3 with norm ‖(x, y, z)‖ =
√
x2 + y2 + z2 where (x, y, z)

are coordinates in an orthonormal basis.

5.5 Euclidean space En

We can transform the vector space Rn into the metric space En by identifying

each vector of the former (also the zero vector O) with a point of the latter. Then

define a distance function on the resulting points with d(P,Q) := ‖P−Q‖. This

distance function produces a differentiable manifold En whose tangent space at

every point is Rn.

Terminology alert. When we say doing euclidean geometry we are referring

to the geometry of euclidean space En, not the euclidean vector space Rn. The

elements of En are points, those of Rn are vectors; the motions of En include

translations and rotations, those of Rn are rotations preserving the origin O. En

is intrinsically more complex than Rn: the tangent space at each point is Rn.

See [Gun17b], §4, for a deeper analysis of this issue. We will see that euclidean

PGA includes both En and Rn in an organic whole.

5.6 The tensor algebra of a vector space

Vector spaces have linear subspaces. The subspace structure is mirrored in the

algebraic structure of the exterior algebra defined over the vector space. To define

the exterior algebra cleanly, we need first to introduce the tensor algebra T (V)

over V. This algebra is generated by multiplying arbitrary sequences of vectors

together to generate a graded algebra. This product is called the tensor product

and is written ⊗. It is bilinear. The tensor product of k vectors is called a

k-vector. The k-vectors form a vector space T k. T 0 is the underlying field R.
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T (V) can be written as the direct sum of these vector spaces:

T =
∞⊕
i=0

T k

Obviously this is a very big and somewhat unwieldy structure, but necessary for

a clean definition of important algebras below.

Example n = 2. The tensor algebra of a 2-dimensional vector space with basis

{u,v} has the basis:

• T 0: {1}
• T 1: {u,v}
• T 2:{u⊗ u,u⊗ v,v ⊗ u,v ⊗ v}
• T 3:{u⊗ u⊗ u,u⊗ u⊗ v,u⊗ v ⊗ u,u⊗ v ⊗ v,v ⊗ u⊗ u,v ⊗ u⊗ v,v ⊗

v ⊗ u,v ⊗ v ⊗ v}
• etc.

5.7 Exterior algebra of a vector space

The exterior algebra is obtained from the tensor algebra by declaring elements

of the form v ⊗ v (where u and v are 1-vectors), to be equivalent to 0, that is,

squares of 1-vectors vanish. By bilinearity, this implies

(u + v)⊗ (u + v) = u⊗ u + v ⊗ v + u⊗ v + v ⊗ u ∼= 0

implying u ⊗ v ∼= −v ⊗ u since u ⊗ u ∼= 0 and v ⊗ v ∼= 0. Thus the quotient

product is anti-symmetric on 1-vectors. The resulting quotient algebra is called

the exterior algebra and its product is the exterior or wedge product, written as

X ∧Y. The product is associative, anti-symmetric on 1-vectors and distributes

over addition. In general, the wedge of a k-vector X and an m-vector Y will

vanish ⇐⇒ X and Y are linearly-dependent subspaces, otherwise it is the

(k +m)-vector representing the subspace span of X and Y.

The exterior algebra G(V) mirrors the subspace structure of V. Two k-vectors

v and αv that are non-zero multiples of each other represent the same subspace

but have different weights, or intensities. G(V) is finite-dimensional since any

m-vector in the tensor algebra with m > n vanishes in the exterior algebra since

any product of n + 1 basis 1-vectors will have a repeated factor, and this is
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equivalent to 0. It can be written as a direct sum of its non-vanishing grades:

G(V) =
n⊕
i=0

∧i

The dimension of each grade is given by dim
(∧k

)
=
(
n
k

)
, so the total dimension

of the algebra is Σn
i=0

(
n
k

)
= 2n.

Example n = 2. The exterior algebra of a 2-dimensional vector space with

basis {u,v} is a 4-dimensional graded algebra:

•
∧0: {1}
•
∧1: {u,v}
•
∧2: {u ∧ v}

Exterior algebras were, like so many other results in this field, discovered by

Hermann Grassmann ( [Gra44]) and are sometimes called Grassmann algebras.

5.8 The dual exterior algebra

Important for PGA: the dual vector space V∗ generates its own exterior algebra

G(V∗) = G∗(V). The standard exterior algebra represents the subspace structure

based on subspace join, where the 1-vectors are vectors (or lines through the

origin). The dual exterior algebra represents the subspace structure “turned on

its head”: the 1-vectors represent hyperplanes through the origin and the wedge

operation is subspace meet. The principle of duality ensures that these two

approaches are completely equivalent and neither a priori is to be preferred. Each

construction produces a separate exterior algebra. The dual exterior algebra is

important for PGA.

The next step on our way to PGA is projective geometry.

5.9 Projective space of a vector space

An n-dimensional real vector space V can be projectivized to produce (n − 1)

dimensional real projective space RPn−1. This is a quotient space constuction as

in the case of the exterior algebra. Here the equivalence relation on vectors of V

is

u ∼= v↔ ∃λ 6= 0 ∈ R such that u = λv
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One sometimes says, the points of RPn are the lines through the origin of V.

Example. RP 2 is called the projective plane. We consider it as arising from

projectivizing R3 (although the norm on R3 plays no role in the construction).

Take R3 with standard basis {e0, e1, e2 vectors pointing in the x-, y-, and z-

directions, resp.) Each point P of the z = 1 plane represents the line through

the origin obtained by joining P to the origin. Hence P corresponds to a point

of RP 2. The only points of RP 2 not accounted for in this way arise from lines

through the origin lying in the z = 0 plane, since such lines don’t intersect the

z = 1 plane. However in projective geometry they correspond to points; it is

useful to speak of ideal points of RP 2 where these lines intersect the plane z = 1.

The intersection of parallel planes yields in the same way an ideal line. The

interplay of euclidean and ideal elements in PGA is essential to its effectiveness.

Figure 5: Traversing the boundary of a triangle (left) and a trilateral (right).

Example of duality in RP 2. Because duality plays an essential role in

PGA, we include an example here to show how it works. Following the pattern

established in the 19th century literature we use a two-column format to present,

on the left, a geometric configuration in the projective plane and, on the right,

its dual configuration. Dualized terms have been highlighted in color. Fig. 5

illustrates this example.
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A triangle is determined by three

points, called its vertices. The pair-wise

joining lines of the vertices are the sides

of the triangle. To traverse the bound-

ary of the triangle, move a point from

one vertex to the next vertex along their

common side, then take a turn and con-

tinue moving along the next side. Con-

tinue until arriving back at the original

vertex.

A trilateral is determined by three

lines, called its sides. The pair-wise in-

tersection points of the sides are the

vertices of the trilateral. To traverse

the boundary of the trilateral, rotate a

line from one side to the next around

their common vertex, then shift over

and continue rotating round the next

vertex. Continue until arriving back at

the original side.

Perhaps you can experience that the left-hand example is somehow more

familiar than the right-hand side. After all, we learn about triangles in school, not

trilaterals. This seems to be related to the fact that we think of points as being

the basic elements of geometry (and reality) out of which other elements (lines,

planes) are built. We’ll see below in Sect. 6.4 however that PGA in important

respects challenges us to think in the right-hand mode.

Why projectivize? Working in projective space guarantees that the meet of

parallel lines and planes, as well as the join of euclidean and ideal elements, are

handled seamlessly, without “special casing” – one of the features on our initial

wish-list. Furthermore we’ll see that only in projective space can we represent

translations.

5.10 Projective exterior algebras

The same construction applied to create RPn from V can be applied to the

Grassmann algebras G(V) and G∗(V) to obtain projective exterior algebras. We

denote these projectivized versions as P(G(V)) and P(G∗(V). Here we use an

(n+ 1)-dimensional V so that we obtain RPn by projectivizing. The resulting

exterior algebras mirror the subspace structure of RPn: 1-vectors in G represent

points in P(G), 2-vectors represent lines, etc., and ∧ is projective join. In the

dual algebra G∗, 1-vectors are hyperplanes ((n− 1)-dimensional subspaces), and

n-vectors represent points, while ∧ is the meet operator. More generally: in a

standard projective exterior algebra P(G), the elements of grade k for k = 1, 2, ...n,

represent the subspaces of dimension k − 1. For example, for n = 2, the 1-vectors
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are points, and the 2-vectors are lines. The graded algebra also has elements of

grade 0, the scalars (the real numbers R); and elements of grade (n + 1) (the

highest non-zero grade), the pseudoscalars.

Figure 6: Left: The plane e0∧e1∧e2 (green) created by joining 3 points in P(G),
the standard exterior algebra (written with raised indices). Right: The meeting
point e0 ∧ e1 ∧ e2 (green) of three planes in P(G∗), the dual exterior algebra
(written with lowered indices).

Example.Fig. 6 shows how the wedge product of three points in P(G) is a

plane, while the wedge product of three planes in P(G∗) is a point. Notice the

use of subscripts and superscripts to distinguish between the two algebras.

5.10.1 Dimensions of projective subspaces

It’s important for what follows to clarify the notion of the dimension of a subspace.

We are accustomed to say that a point in RPn is a 0-dimensional subspace. This

is indeed the case in the context of the standard exterior algebra where points

are represented by 1-vectors. Then all other linear subspaces are built up out of

the 1-vectors by wedging (joining) points together. The dimension counts how

many 1-vectors are needed to generate a subspace. For example, a line (2-vector)

can be represented as the join of two points ` = A ∧B. ` is 1-dimensional since

there is a one-parameter set of points incident with the line, given by αA + βB

where only the ratio α : β matters. A line considered as a set of incident points

is called a point range. In general, if you wedge together k linearly independent
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points you obtain a k − 1-dimensional subspace. For let X = P1 ∧ ... ∧ Pk.

Then X ∧ P = 0 ⇐⇒ P ∼= α1P1 + ... + αkPk for real constants {αi}. Since

we are working in projective space, this is a (k − 1)-dimensional set of points

({αi} ≡ β{αi} for non-zero β).

When we apply this reasoning to the dual exterior algebra, we are led to

the surprising conlusion that a plane (a 1-vector) is 0-dimensional, since all the

other linear subspaces are built up from planes by the meet operation. That

is, in the dual algebra planes are simple and indivisible, just as a point in the

standard algebra is. A line (2-vector) is the meet of two planes ` = a ∧ b. ` is

1-dimensional since there is a one-parameter set of planes incident with the line,

given by αa +βb where only the ratio α : β matters. A line considered as a set of

incident planes is called a plane pencil. It’s the form you get if you spin a plane

around one of its lines. The meet of three planes is a point. The set of all planes

incident with the point is 2-dimensional, called a plane bundle, etc. To think

in this way you have to overcome certain habits that associate dimension with

extensive “size”.

Take-away. The dimension of a geometric primitive depends on whether it is

viewed in the standard exterior algebra or the dual exterior algebra. The 1-vectors

serve as the “building block” in both cases. For example, in the standard algebra

a point is 0-dimensional, simple, and indivisible. In the dual algebra, however, it

is two-dimensional, since it is created by wedging together three planes, or, what

is the same, there is a two-parameter family of planes incident with it.

5.10.2 Poincaré duality

Every geometric entity x (e.g., point, line, plane) occurs once in each exterior

algebra, say as x ∈ P(G) and as x∗ ∈ P(G∗). The Poincaré duality map

J : P(G) → P(G∗) is defined by x → x∗. It is essentially an identity map,

sometimes called the “dual coordinates” map. When often use J for both maps

when there is no danger of confusion. J is a grade-reversing map, that is a

vector space isomorphism
∧k ↔

∧n+1−k for all k. In particular it is invertible.

See [Gun11a] §2.3.1 for details.
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5.10.3 The regressive product

Using J , it’s possible to “import” the outer product from one algebra into the

the other. This imported product is sometimes called the regressive product to

distinguish it from the native wedge product. For example, it possible to define a

join operator ∨ in P(G∗) by

X ∨Y := J−1(J(X) ∧ J(Y))

where the ∧ on the right-hand side is that of the algebra P(G). In this way,

join and meet are available within a single algebra. We’ll see below in Sect. 6.4

why this is important for PGA . We write the outer product of P(G∗), the meet

operator, as ∧, and the join operator, imported from P(G), as ∨. That’s easy to

remember due to their similarity to the set operations ∩ and ∪.

References. The above mathematical prerequisites can be well-studied on

Wikipedia in the articles on: vector space, bilinear form, quadratic form, tensor

algebra, exterior algebra, and projective space. We turn now to the geometric

product and associated geometric product.

6 Geometric product and geometric algebra

The exterior algebra of RPn answers questions regarding incidence (meet and

join) of projective subspaces. That’s an important step and yields uniform

representation of points, lines, and planes as well as a “parallel-safe” meet and

join operators, both features from our wish-list.

However the exterior algebra knows nothing about measurement, such as

angle and distance, crucial to euclidean geometry. To overcome this we refine the

equivalence relation that we used to produce the exterior algebra from the tensor

algebra T. Instead of requiring that v ⊗ v ∼= 0 we require that

v ⊗ v −B(v,v) ∼= 0

where B is a symmetric bilinear form, that is v⊗v is equivalent to a scalar but not

necessarily to 0 as in an exterior algebra. We define the geometric algebra4 with

4Sometimes called a Clifford algebra in honor of its discoverer [Cli78]. Clifford however called
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inner product B to be the quotient of the tensor algebra by this new equivalence

relation. Since this relation encodes an inner product on vectors, the geometric

product contains more information than the exterior product. We write the

geometric product using simple juxtaposition: XY.

Since the square of every 1-vector reduces to a scalar (0-vector), we obtain

the same finite-dimensional graded algebra structure for the geometric algebra as

for the exterior algebra, described in Sect. 5.7. In fact, as we now show, one can

also construct the geometric algebra by extending the exterior algebra.

Alternative formulation.. Define the geometric product of two 1-vectors u

and v to be

uv := u · v + u ∧ v

where · is the inner product associated to B and ∧ is the wedge product in the

associated exterior algebra. (I. e., skip the tensor algebra formulation entirely.)

Then it’s possible to show that this geometric product has a unique extension to

the whole graded algebra that agrees with the geometric product obtained above

using the more abstract tensor product construction.

Connection to exterior algebra. The geometric algebra reduces to the

exterior algebra when B is trivial: B(u,v) = 0, equivalent to a signature of

(0, 0, n).

6.1 Projective geometric algebra

In order to apply the Cayley-Klein construction for modeling metric spaces

such as euclidean space, we work in projective space. That is, we interpret the

geometric product in a projective setting just as we did with the wedge product

in the projectivized exterior algebra. We call the result a projective geometric

algebra or PGA for short. It uses (n+ 1)-dimensional coordinates to model n−
dimensional euclidean geometry. The standard geometric algebra based on P(G)

with signature (p,m, z) is denoted P(Rp,m,z). The dual version of the same (based

on P(G∗)) is written P(R∗p,m,z).

Remark. PGA is actually a whole family of geometric algebras, one for each

signature; the rest of these notes concern finding and exploring the member of

it a geometric algebra, and we follow him.
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this family that models euclidean geometry. We often write “PGA” for this one

algebra – we sometimes use the more precise “EPGA” for ”euclidean” PGA to

avoid confusion.

6.2 Geometric algebra basics

In general, the geometric product of a k-vector and an m-vector is a sum of

components of different grades, each expressing a different geometric aspect of the

product, as in the geometric product of two 1-vectors above. A general element

containing different grades is called a multivector. A multivector M can be written

then as a sum of different grades: M =
∑n

i=0〈M〉i. For example, we can write the

above geometric product of two 1-vectors as: ab := 〈ab〉0 + 〈ab〉2. The product

of two multivectors can be reduced to a sum of products of single-grade vectors,

so we concentrate our discussions on the latter.

The highest grade part of the product is the (k+m)-grade part, and coincides

with the ∧ product in the exterior algebra. All the other parts of the product

involve some “contraction” due to the square of a 1-vector reducing to a scalar

(0-vector), which drops the dimension of the product down by two for each such

square. We define the lowest-grade part of the geometric product of a k-vector

and an m-vector to be the inner product and write a · b (it does not have to be a

scalar!). It has grade |k −m|.
We will occasionally also need the commutator product X×Y := 1

2(XY−YX),

the so-called anti-symmetric part of the geometric product. A k-vector which

can be written as the product of 1-vectors is called a simple k-vector. Note that

then all the 1-vectors are orthogonal to each other and the product is equal to

the wedge product of the 1-vectors. Any multi-vector can be written as a sum of

simple k-vectors. We sometimes call 2-vectors bivectors, and 3-vectors, trivectors.

We’ll also need the reverse operator X̃, that reverses the order of the products

of 1-vectors in a simple k-vector. If the simple k-vector is X, then the reverse

X̃ = (−1)(
k
2)X. The exponent counts how many “neighbor flips” are required

to reverse a string with k characters (since for orthogonal 1-vectors a and b,

ba = −ab).

We first explore the algebra P(R3,0,0) in order to warm up in a familiar setting.
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1 e0 e1 e2 E0 E1 E2 I

1 1 e0 e1 e2 E0 E1 E2 I

e0 e0 1 E2 −E1 I −e2 e1 E0

e1 e1 −E2 1 E0 e2 I −e0 E1

e2 e2 E1 −E0 1 −e1 e0 I E2

E0 E0 I −e2 e1 −1 −E2 E1 −e0

E1 E1 e2 I −e0 E2 −1 −E0 −e1

E2 E2 −e1 e0 I −E1 E0 −1 −e2

I I E0 E1 E2 −e0 −e1 −e2 −1

Table 1: Multiplication table for P(R3,0,0), the geometric algebra of the sphere.

6.3 Example: Spherical geometry via P(R3,0,0)

This is the projectivized geometric algebra of R3, the familiar 3D euclidean vector

space. Take an orthonormal basis {e0, e1, e2). Then a general 1-vector is given by

u = xe0 + ye1 + ze2. It satisfies u2 = x2 + y2 + z2 = ‖u‖2. The set of 1-vectors

satisfying ‖u‖ = 1 forms the unit sphere (whereby u and −u represent the same

projective point in the algebra). We saw above, the product of two normalized

1-vectors is given by uv := u · v + u ∧ v. Here u · v = cosα where α is the angle

between the spherical points u and v, and u ∧ v is the line (2-vector) spanned by

the points (represented by a great circle joining the points.)

An orthonormal basis for the 2-vectors is given by

{E0 := e1e2, E1 := e2e0, E2 := e0e1}

These are three mutually perpendicular great circles. The unit pseudo-scalar is

I := e012 := e0e1e2. Multiplication of either a 1- or 2-vector with I produces the

orthogonal complement X⊥ of the argument X. That is, u⊥ = uI is the great

circle that forms the “equator” to the “pole” point represented by u; UI for a

2-vector U produces the polar point of the “equator” represented by U. The

complete 8x8 multiplication table is shown in Table 1.

Exercise.. Check in the multiplication table that the products eiI = Ei and

EiI = −ei for i ∈ {1, 2, 3} and verify that these results confirm that multiplication

by I is the “orthogonal complement” operator.
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Exercise. Show that the angle α between two normalized 2-vectors (great

circles) in P(R3,0,0) is given by α = cos−1 (U ·V).

Exercise. Verify that the elements {1, e12, e20, e01} generates a sub-algebra of

P(R3,0,0) that is isomorphic to Hamilton’s quaternion algebra H generated by

{1, i, j, k}.

Exercise. Find as many formulas of spherical geometry/trigonometry as you

can within P(R3,0,0).

Exercise. P(R∗3,0,0) is the same algebra as above but uses the dual construction

where the 1-vectors are lines (great circles). Show that it also provides a model

for spherical geometry, one in which the U ·V = cosα for normalized 1-vectors

U and V meeting at angle α.

The above discussion gives a rudimentary demonstration of how the signature

(3, 0, 0) leads to a model of spherical geometry in both the standard and dual

constructions

We now turn to the question of which member of the PGA family models the

euclidean plane. That is, we need to determine a signature and, possibly, choose

between the standard and dual construction. The existence of parallel lines in

euclidean geometry plays an essential role in this search.

6.4 Determining the signature for euclidean geometry

We saw that the inner product of 1-vectors in P(R∗3,0,0) can be used to compute

the angle between two lines in spherical geometry. What does the analogous

question in the euclidean plane yield? Let

a0x+ b0y + c0 = 0, a1x+ b1y + c1 = 0

be two oriented lines which intersect at an angle α. We can assume without loss

of generality that the coefficients satisfy a2
i + b2i = 1. Then it is not difficult to

show that a0a1 + b0b1 = cosα. One can observe for example that the direction of

line i is (−bi, ai) and calculate the angle of these direction vectors.

The superfluous coordinate. The third coordinate of the lines makes no

difference in the angle calculation! Indeed, translating a line changes only its third

coordinate, leaving the angle between the lines unchanged. Refer to Fig. 7 which
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Figure 7: Angles of euclidean lines.

shows an example involving a general line and a pair of horizontal lines. Choose a

basis for the (dual) projective plane so that e1 corresponds to the line x = 0, e2

to y = 0, and e0 to z = 0.5 Then the line given by ax+ by+ c = 0 corresponds to

the 1-vector ce0 + ae1 + be2. If the geometric product of two such 1-vectors is to

produce a1a2 + b1b2 then the signature has to be (2, 0, 1). Hence the proper PGA

for E2 is P(R∗2,0,1). Such a signature, or metric, is called degenerate since z 6= 0.

Reminder: The ∗ in the name says that the algebra is built on P(G∗), the

dual exterior algebra, since the inner product is defined on lines instead of points.

A similar argument applies in dimension n, yielding the signature (n, 0, 1) for En.

P(Rn,0,1) models a qualitatively different metric space called dual euclidean space.

Degenerate metric: asset or liability? PGA’s development reflects the fact

that much of the existing literature on geometric algebras deals only with non-

degenerate metrics, reflecting widespread prejudices regarding degenerate metrics.

(See [Gun17b] for a thorough analysis and refutation of these misconceptions.)

After long experience we are convinced that the degenerate metric, far from being

a liability, is an important part of PGA’s success – exactly the degenerate metric

models the metric relationships of euclidean geometry faithfully (see [Gun17b],

5The unusual ordering is chosen since it is more convenient if in every dimension the
“superfluous” coordinate always has the same index.
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Figure 8: Fundamental triangle of coordinate system.

§5.3).

7 PGA for the euclidean plane: P(R∗2,0,1)

We give now a brief introduction to PGA by looking more closely at euclidean plane

geometry. Readers can find more details in [Gun17a]. The approach presented

here can be carried out in a coordinate-free way ( [Gun17a], Appendix). But for

an introduction it’s easier and also helpful to refer occasionally to coordinates.

The coordinates we’ll use are sometimes called affine coordinates for euclidean

geometry. We add an extra coordinate to standard n-dimensional coordinates.

For n = 2:

• Point: (x, y)→ (x, y, 1)

• Direction: (x, y)→ (x, y, 0)

A perspective figure of the basis elements is shown in Fig. 8. The basis 1-vector

e0 represents the ideal line, sometimes called the “line at infinity” and written ω

to remind us that it is defined in a coordinate-free way. e1 and e2 represent the

coordinate lines x = 0 and y = 0, resp. These basis vectors satisfy e2
0 = 0 and

e2
1 = e2

2 = 1, consistent with the signature (2, 0, 1). Note that by orthogonality,

eiej = ei ∧ ej when i 6= j. A basis for the 2-vectors is given by the products (i.

e., intersection points) of these orthogonal basis lines:

E0 := e1e2, E1 := e2e0, E2 := e0e1
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1 e0 e1 e2 E0 E1 E2 I

1 1 e0 e1 e2 E0 E1 E2 I

e0 e0 0 E2 −E1 I 0 0 0

e1 e1 −E2 1 E0 e2 I −e0 E1

e2 e2 E1 −E0 1 −e1 e0 I E2

E0 E0 I −e2 e1 −1 −E2 E1 −e0

E1 E1 0 I −e0 E2 0 0 0

E2 E2 0 e0 I −E1 0 0 0

I I 0 E1 E2 −e0 0 0 0

Table 2: Multiplication table for the geometric product in P(R∗2,0,1)

whereby E0 is the origin, E1 and E2 are the x- and y− directions (ideal points),

resp. They satisfy E2
0 = −1 while E2

1 = E2
2 = 0. That is, the signature on the

2-vectors is more degenerate: (1, 0, 2). Finally, the unit pseudoscalar I := e0e1e2

represents the whole plane and satisfies I2 = 0. The full 8x8 multiplication table

of these basis elements can be found in Table 2.

Exercise. 1) For a 1-vector m = ae1 + be2 + ce0, m2 = a2 + b2. 2) For a

2-vector P = xE1 + yE2 + zE0, P2 = −z2.

7.1 Normalizing k-vectors

From the previous exercise, the square of any k-vector is a scalar. When it is

non-zero, the element is said to be euclidean, otherwise it is ideal. Just as with

euclidean vectors in Rn, it’s possible and often preferable to normalize simple

k-vectors. Euclidean k-vectors can be normalized by the formula

X̂ :=
X√
|X2|

Then X̂ satisfies X2 = ±1.

For a euclidean line a, the element â :=
a√
a2

represents the same line but is

normalized so that â2 = 1. A euclidean point P = xE1 + yE2 + E0 is normalized

and satisfies P2 = −1.6 This gives rise to a standard norm on euclidean k-vectors

6The point −P is a normalized form for P also but we use positive z-coordinate wherever
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X that we write ‖X‖.

7.1.1 The ideal norm

Such a normalization is not possible for ideal elements, since these satisfy X2 = 0.

There is a “natural” non-zero norm on ideal elements that arises from the standard

norm as follows: define the inner product of 2 (n− 1)-dimensional ideal flats to

be the inner product of any two euclidean n-dimensional flats whose intersections

with the ideal plane are these two ideal flats. This is well-defined since translating

a line parallel to itself does not change its inner product with other lines (it only

changes the e0 term, that doesn’t have an effect on the inner product).

If the two lines are aie1 + bie2 + cie0) their inner product is (a0a1 + b0b1) and

their ideal points are aiE01 + biE02. In order for the inner product of these two

lines to be (a0a1 + b0b1) it’s clear that the signature on the ideal line has to be

(2, 0, 0), and in general, (n, 0, 0). In this way the set of ideal elements are given

the structure of an (n − 1)-dimensional dual PGA with signature (n, 0, 0), the

standard positive definite metric of Rn: ideal points are identical with euclidean

vectors, a fact already recognized by Clifford [Cli73]. In the projective setting we

say that the ideal plane has an elliptic metric.

In fact, rather than starting with the euclidean planes and deducing the

induced inner product on ideal lines as sketched above, it is also possible to start

with this inner product on the ideal elements and extend it onto the euclidean

elements (i. e., the inner product of two euclidean lines is defined to be the inner

product of their two ideal points). This approach to the ideal norm is sketched in

the appendix of [Gun17a].

In the case of n− 2, this yields an ideal norm with the following properties.

• Point In terms of the coordinates introduced above, for an ideal point

V = xE1 + yE2, ‖V‖∞ :=
√
x2 + y2. A coordinate-free definition of the

ideal norm of an ideal point V is given by ‖V‖∞ := ‖V ∨ P‖ for any

normalized euclidean point P.

• Line The ideal norm for an ideal line m = ce0 is given by ‖m‖∞ := c. This

can be obtained in a coordinate-free way via the formula ‖m‖∞ = m ∨P

where P is any normalized euclidean point. Using the ∨ operator instead

of ∧ produces a scalar directly instead of a pseudoscalar with the same

possible.
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numerical value.

• Pseudoscalar We can also consider the pseudoscalar as an ideal element

since since I2 = 0. The ideal norm for a pseudoscalar aI is ‖aI‖∞ = a.

Note that the ideal norms for lines and pseudoscalars are signed magnitudes. This

is due to the fact that they belong to 1-dimensional subspaces that allow such a

coordinate-free signed magnitude (based on the single generator). To distinguish

them from traditional (non-negative) norms we call them numerical values but

use the same notation ‖...‖∞ for both.

7.1.2 Ideal norm via Poincaré duality

Another neat way to compute the ideal norm is provided by Poincaré duality. The

discussion of Poincaré duality above in Sect. 5.10 took place at the level of the

Grassmann algebra. It’s possible to consider this map to be between geometric

algebras, in this case, J : P(R∗2,0,1) → P(R2,0,1). We leave it as an exercise

for the reader to verify that for ideal x ∈ P(R∗2,0,1), ‖x‖∞ = ‖J(x)‖ (where by

sleight-of-hand the scalar on the right-hand side is interpreted as a scalar in

P(R∗2,0,1)). That is, the ideal norm in the euclidean plane is the ordinary norm

in the dual euclidean plane. Naturally the same holds for arbitrary dimension.

Whether this “trick” has a deeper meaning remains a subject of research.

We will see that the two norms – euclidean and ideal – harmonize remarkably

with each other, producing polymorphic formulas – formulas that produce correct

results for any combination of euclidean and ideal arguments. The sequel presents

numerous examples.

Weight of a vector. Regardless of the type of norm, if an element satisfies

‖X‖ = d ∈ R, we say it has weight d. The normed elements have weight 1. A

typical computation requires that the arguments are normalized; the weight of

the result then gives important insight into the calculation. That means, we don’t

work strictly projectively, but use the weight to distinguish between elements

that are projectively equivalent. We will see this below, in the section on 2-way

products. In the discussions below, we assume that all the arguments have been

normalized with the appropriate norm since, just as in Rn, it simplifies many

formulas.
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7.2 Examples: Products of pairs of elements in 2D

We get to know the geometric product better by considering basic products.

We consider first multiplication by the pseudoscalar I, then turn to products of

pairs of normalized euclidean points and lines. It may be helpful to refer to the

multiplication table (Table 2) while reading this section. Also, consult Fig. 9

which illustrates many of the products discussed below. A fuller discussion can

be found in [Gun17a].

b
bI

Q

P

P v Q 

P x Q

P a.a   P v

||P x Q|| 

a   b v

a
( )

cos  (a b) .-1

∞

P a. a

Figure 9: Selected geometric products of pairs of simple vectors.

Multiplication by the pseudoscalar. Multiplication by the pseudoscalar I

maps a k-vector onto its orthogonal complement with respect to the euclidean

metric. For a euclidean line a, a⊥ := aI is an ideal point perpendicular to

the direction of a. For a euclidean point P, P⊥ := PI is the ideal line e0.

Multiplication by I is also called the polarity on the metric quadric, or just the

polarity operator.

Product of two euclidean lines. We saw above that this product can be
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used as the starting point for the geometric product:

ab = a · b + a ∧ b

a · b = 〈ab〉0 = cosα, where α is the oriented angle between the two lines (±1

when they coincide or are parallel), while a ∧ b = 〈ab〉2 is their intersection

point. If we call the normalized intersection point P (using the appropriate norm),

then 〈ab〉2 = (sinα)P when the lines intersect and 〈ab〉2 = dabP when the lines

are parallel and are separated by a distance dab. Here we see the remarkable

functional polymorphism mentioned earlier, reflecting the harmonious interaction

of the two norms.

Product of two euclidean points.

PQ = 〈PQ〉0 + 〈PQ〉2 = −1 + dPQV

The inner product of any two normalized euclidean points is -1. This illustrates

the degeneracy of the metric on points: every other point yields the same inner

product with a given point! The grade-2 part is more interesting: it is the

direction (ideal point) perpendicular to the joining line P ∨ Q. It’s easy to

verify that 〈PQ〉2 = P×Q. V in the formula is the normalized form of P×Q.

Then the formula shows that the distance dPQ between the two points satisfies

dPQ = ‖P×Q‖∞: while the inner product of two points cannot be used to obtain

their distance, 〈PQ〉2 can. Here are two further formulas that yield this distance:

dPQ = ‖P ∨Q‖ = ‖P−Q‖∞.

Product of euclidean point and euclidean line. This yields a line and a

pseudoscalar, both of which contain important geometric information:

aP = 〈aP〉1 + 〈aP〉3 = a ·P + a ∧P

= a⊥P + daP I

Here a⊥P := a · P is the line passing through P perpendicular to a, while the

pseudoscalar part has weight daP , the euclidean distance between the point and

the line. Note that this inner product is anti-symmetric: P · a = −a ·P.

Practice in thinking dually: more about a ·P. You might be wondering,
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why is a ·P a line through P perpendicular to a? This is a good opportunity to

practice thinking in the dual algebra. We are used to thinking of lines as being

composed of points. That however is only valid in the standard algebra P(G).

In the dual algebra, we have to think of points as being composed of lines! The

1-vectors (lines) are the building blocks; they create points via the meet operator.

A point “consists” of the lines that pass through it – called the line pencil in P.

This is analogous to thinking of a line as consisting of all the points that lie on it

– called the point range on the line. Consider a ·P in this light.

When P lies on a then we can write P = ab for the orthogonal line b through

P. Then aP = aab = b since a2 = 1. Hence the claim is proven. When P does

not lie on a the multiplication removes the line through P parallel to a from the

grade-1 part of the product, leaving as before the line b orthogonal to a. We

leave the details as an exercise for the reader. (Hint: any line parallel to a is of

the form a + ke0.) This example shows why the inner product is often called a

contraction since it reduces the dimension by removing common subspaces.

Remarks regarding 2-way products. In the above results, you can also

allow one or both of the arguments to be ideal; one obtains in all cases meaningful,

“polymorphic” results. We leave this as an exercise for the interested reader.

Interested readers can consult [Gun17a]. The above formulas have been collected

in Table 3. Note that the formulas assume normalized arguments.

After this brief excursion into the world 2-way products, we turn our attention

to 3-way products with a repeated factor. First, we look at products of the form

XXY (where X and Y are either 1- or 2-vectors). Applying the associativity of

the geometric product produces “formula factories”, yielding a wide variety of

important geometric identities. Secondly, products of the form aba for 1-vectors a

and b are used to develop an elegant representation of euclidean motions in PGA

based on so-called sandwich operators. [Gun17a] contains more about general

3-way products in P(R∗2,0,1).

7.3 Formula factories through associativity

First recall that for a normalized euclidean point or line, X2 = ±1. Use this and

associativity to write

Y = ±(XX)Y = ±X(XY)
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Figure 10: Orthogonal projections (l. to r.):, line m onto line n, line m onto
point P, point P onto line m.

where Y is also a normalized euclidean 1- or 2-vector. The right-hand side yields

an orthogonal decomposition of Y in terms of X. Associativity of the geometric

product shows itself here to be a powerful tool. These decompositions are not only

useful in their own right, they provide the basis for a family of other constructions,

for example, “the point on a given line closest to a given point”, or “the line

through a given point parallel to a given line” (see also Table 3).

Note that the grade of the two vectors can differ. We work out below three

orthogonal projections. As in the above discussions, we assume the given points

and lines have been normalized, so their coefficients carry unambiguous metric

information.

Project line onto line. Assume both lines are euclidean and they they

intersect in a euclidean point. Multiply

mn = m · n + m ∧ n

with n on the right and use n2 = 1 to obtain

m = (m · n)n + (m ∧ n)n

= (cosα)n + (sinα)Pn

= (cosα)n− (sinα)n⊥P

In the second line, P is the normalized intersection point of the two lines.

Thus one obtains a decomposition of m as the linear combination of n and the

perpendicular line n⊥P through P. See Fig. 10, left.
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Figure 11: The reflection in the line a followed by reflection in line b.

Exercise. If the lines are parallel one obtains m = n + dmnω.

Project line onto point. Multiply mP = m ·P + m∧P with P on the right

and use P2 = −1 to obtain

m = −(m ·P)P− (m ∧P)P

= −m⊥PP− (dmPI)P

= m
||
P − dmPω

In the third equation, m
||
P is the line through P parallel to m, with the same

orientation. Thus one obtains a decomposition of m as the sum of a line through

P parallel to m and a multiple of the ideal line. Note that just as adding an ideal

point (“vector”) to a point translates the point, adding an ideal line to a line

translates the line. See Fig. 10, middle.

Project point onto line. Finally one can project a point P onto a line m.

One obtains thereby a decomposition of P as Pm, the point on m closest to P,

plus a vector perpendicular to m. See Fig. 10, right.
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7.4 Representing isometries as sandwiches

Three-way products of the form aba for euclidean 1-vectors a and b turn out

to represent the reflection of the line b in the line a, and form the basis for an

elegant realization of euclidean motions as sandwich operators. We sketch this

here.

Let a and b be normalized 1-vectors representing different lines. Then

aba = a(ba) = a(b · a + b ∧ a)

= cos(α)a + a(b ∧ a)

= cos(α)a + sin(α)aP

= cos(α)a + sin(α)a ·P

= cos(α)a + sin(α)a⊥P

We use the symmetry of the inner product in line 2. In line 3 we replace a ∧ b

with the normalized point P and weight sinα. Line 4 is justified by the fact that

a∧P = 0, and line 5 uses the definition of a⊥P. Compare this with the orthogonal

decomposition for b obtained above in Sect. 7.3:

b = cos(α)a− sin(α)a⊥P

Using the fact that a⊥P is a line perpendicular to a leads to the conclusion that

aba must be the reflection of b in a, since the reflection in a is the unique linear

map fixing a and ω and mapping a⊥P to −a⊥P. (Exercise Prove that aωa = −ω.)

We call this the sandwich operator corresponding to a since a appears on both

sides of the expression. It’s not hard to show that for a euclidean point P, aPa is

the reflection of P in the line a.7 Similar results apply in higher dimensions: the

same sandwich form for a reflection works regardless of the grade of the “meat”

of the sandwich.

Rotations and translations. It is well-known that all isometries of euclidean

space are generated by reflections. The sandwich b(aXa)b represents the compo-

sition of reflection in line a followed by reflection in line b. See Fig. 11. When

the lines meet at angle α
2 , this is well-known to be a rotation around the point

7Hint: write P = p1p2 where p1 · p2 = 0
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Operation PGA

Intersection point of two lines a ∧ b

Angle of two intersecting lines cos−1(a · b)

sin−1(‖a ∧ b‖)
Distance of two || lines ‖a ∧ b‖∞
Joining line of two points P ∨Q

⊥ direction to join of two points P×Q

Distance between two points ‖P ∨Q‖, ‖P×Q‖∞
Oriented distance point to line ‖a ∧P‖
Angle of ideal point to line sin−1 (‖a ∧P‖∞)

Line through point ⊥ to line P · a
Nearest point on line to point (P · a)a

Line through point || to line (P · a)P

Oriented area of triangle ABC 1
2(A ∨B ∨C)

Length of closed loop P1P2...Pn Σn
i=1‖Pi ∨Pi+1‖

Oriented area of closed loop P1P2...Pn ‖Σn
i=1(Pi ∨Pi+1)‖

Reflection in line (X = point or line) aXa

Rotation around point of angle 2α RXR̃ (R := eαP)

Translation by 2d in direction V⊥ TXT̃ (T := 1 + dV)

Motor moving line a1 to a2 1 + â2a1

Logarithm of motor g cos−1(〈g〉0)〈̂g〉2

Table 3: A sample of geometric constructions and formulas in the euclidean
plane using PGA (assuming normalized arguments, all arguments euclidean unless
otherwise stated).
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P through of angle α. R := ab = cos α2 + sin α
2 P by the above formula. The

rotation can be expressed as RXR̃. (Here, R̃ is the reversal of R, obtained by

writing all products in the reverse order. When R is normalized, it’s also the

inverse of R.)

When a and b are parallel, R generates the translation in the direction

perpendicular to the two lines, of twice the distance between them – once again,

PGA polymorphism in action. A product of k euclidean 1-vectors is called a

k-versor ; hence the sandwich operator is sometimes called a versor form for the

isometry. When R is normalized so that RR̃ = 1, it’s called a motor. A motor

is either a rotator (when its fixed point is euclidean) or a translator (when it’s

ideal).

Exponential form for motors. Motors can be generated directly from the

normalized center point P and angle of rotation α using the exponential form

R = e
α
2

P = cos
α

2
+ sin

α

2
P

. This is another standard technique in geometric algebra: The exponential

behaves like the exponential of a complex number since, as we noted above, a

normalized euclidean point satisfies P2 = −1. When P is ideal (P2 = 0), the same

process yields a translation through distance d perpendicular to the direction of

P, by means of the formula T = e
d
2
P = 1 + d

2P.

Motor moving one line to another. Given two lines l1 and l2, there is

a unique direct isometry that moves l1 to l2 and fixes their intersection point

P := l1∧l2. Indeed, we know that when P is euclidean and the angle of intersection

is α, the product g := l2l1 is a motor that rotates by 2α around the intersection

point l1 ∧ l2. Hence the desired motor can be written
√

g. (Exercise. When g

has been normalized to satisfy ‖g‖ = 1, then
√

g = 1̂ + g. [Hint: The proof is

similar to that of the statement: Given P = (cos t, sin t) and Q = (1, 0) on the

unit circle,
P +Q

2
lies on the angle bisector of central angle POQ.]) This result

is true also when P is ideal.

This concludes our treatment of the euclidean plane.Table 3 contains an

overview of formulas available in P(R∗2,0,1), most of which have been introduced

in the above discussions. We are not aware of any other frameworks offering

comparably concise and polymorphic formulas for plane geometry.
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8 PGA for euclidean space: P(R∗3,0,1)

If you have followed the treatment of plane geometry using PGA, then you are

well-prepared to tackle the 3D version P(R∗3,0,1). Naturally in 3D one has points,

lines, and planes, with the planes taking over the role of lines in 2D (as dual

to points); the lines represent a new, middle element not present in 2D. With

a little work one can derive similar results to the ones given above for 2-way

products, for orthogonal decompositions, and for isometries. For example, a · b
is the angled between two planes a and b. A look at the tables of formulas for

3D (Table 4, Table 5) confirms that many of the 2D formulas reappear, with

planes substituting for lines. If you re-read Examples 4.3 and 4.4 now you should

understand much better how 3D isometries are represented in PGA, based on

what you’ve learned about 2D sandwiches.

Notation and foundations. We continue to use large roman letters for points.

Dual to points, planes are now written with small roman letters. Lines (and in

general 2-vectors) are written with large Greek letters. Now e0 is an ideal plane

instead of ideal line, and there are three ideal points E1, E2 and E3 representing

the x-, y-, and z-directions instead of just three. Bivectors have 6 coordinates

corresponding to the six intersection lines of the four basis planes. The lines

e01, e02, e03 are ideal lines, and represent the intersections of the 3 euclidean basis

planes with the ideal plane. The lines e23, e31, e12 are lines through the origin in

the (x, y, z)-directions, resp. Hence, every bivector can be trivially written as the

sum of an ideal line and a line through the origin.

In the interests of space, we leave it to the reader to confirm the similarities

of the 3D case to the 2D case. We focus our energy for the remainder of this

section on one important difference to 2D: bivectors of P(R∗3,0,1), which, as we

mentioned above, have no direct analogy in P(R∗2,0,1).

8.1 Simple and non-simple bivectors in 3D

In P(R∗2,0,1), all k-vectors are simple, that is, they can be written as the product

of k 1-vectors. This is no longer the case in P(R∗3,0,1). A simple bivector Σ in 3D

is the geometric product of two perpendicular planes Σ = p1 ∧ p2 and represents

their intersection line. Then clearly Σ ∧Σ = 0. Let Σ1 and Σ2 be two simple
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Operation formula

Intersection line of two planes a ∧ b

Angle of two intersecting planes cos−1(a · b)

sin−1(‖a ∧ b‖)
Distance of two || planes ‖a ∧ b‖∞
Joining line of two points P ∨Q

Intersection point of three planes a ∧ b ∧ c

Joining plane of three points P ∨Q ∨R

Intersection of line and plane Ω ∧ a

Joining plane of point and line P ∨Ω

Distance from point to plane ‖a ∧P‖
Angle of ideal point to plane sin−1 (‖a ∧P‖∞)

⊥ line to join of two points P×Q

Distance of two points ‖P ∨Q‖, ‖P×Q‖∞
Line through point ⊥ to plane P · a
Project point onto plane (P · a)a

Project plane onto point (P · a)P

Plane through line ⊥ to plane Ω · a
Project line onto plane (Ω · a)a

Project plane onto line (Ω · a)Ω

Plane through point ⊥ to line P ·Ω
Project point onto line (P ·Ω)Ω

Project line onto point (P ·Ω)P

Line through point ⊥ to line ((P ·Ω)Ω) ∨P

Oriented volume of tetrahedron ABCD 1
3‖A ∨B ∨C ∨D‖

Area of triangle mesh M 1
2

∑
∆i∈M

‖P̂i1 ∨ P̂i2 ∨ P̂i3‖

Volume of closed triangle mesh M 1
3‖(

∑
∆i∈M

P̂i1 ∨ P̂i2 ∨ P̂i3)‖∞

Table 4: A sample of geometric constructions and formulas in 3D using PGA
(assuming normalized arguments).
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Operation formula

Common normal line to Ω1,Ω2
̂Ω1 ×Ω2

Angle α between Ω1,Ω2 α = cos−1 (Ω̂1 · Ω̂2)

Distance between Ω1,Ω2 dΩ1Ω2 = cscα (Ω̂1 ∨ Ω̂2)

Refl. in plane (X = pt, ln, or pl) aXa

Rotation with axis Ω by angle 2α RXR̃ (R := eαΩ)

Translation by 2d in direction V TXT̃ (T := (E0 ∨ dV)I)

Screw with axis Ω and pitch p SXS̃ (S := et(1+pI)Ω)

Logarithm of motor m b = 〈m〉2, s =
√
−b · b, p = −b∧b

2s

b̂ = s−p
s2

b

log m =
(

tan−1( s
〈m〉0 ) + p

〈m〉0

)
b̂

Table 5: More formulas in 3D using PGA focused on motors and bivectors.

bivectors that represent skew lines8. We claim that the bivector sum Σ := Σ1+Σ2

is a non-simple. First note that since Σ1 and Σ2 are skew, they are linearly

independent, implying Σ1 ∧Σ2 6= 0. Then, using bilinearity and symmetry of the

wedge product (on bivectors!), one obtains directly Σ ∧Σ = 2Σ1 ∧Σ2 6= 0. We

saw above however that a simple 2-vector Σ satisfies Σ ∧Σ = 0. Hence Σ must

be non-simple. In fact, as the next section shows, most bivectors are non-simple.

Exponentials of simple bivectors. In the sequel we will need to know the

exponential of a simple bivector. The situation is exactly analogous to the 2D case

handled above and yields: For a simple euclidean bivector Ω, eαΩ = cosα+sinαΩ.

For a simple ideal bivector Ω∞, edΩ∞ = 1 + dΩ∞.

8.1.1 The space of bivectors and Plücker’s line quadric

As noted above, the space of bivectors
∧2 is spanned by the 6 basis elements

eij := eiej and forms a 5-dimensional projective space P(
∧2). From the above

discussion we can see the condition that a bivector Ω is a line can be written

as Ω ∧ Ω = 0. (In terms of coordinates, the bivector Σaijeij is a line ⇐⇒
a01a23 + a02a31 + a03a12 = 0.) This defines the Plücker quadric L, a 4D quadric

8Skew lines are lines that do not intersect. Remember: parallel lines meet at ideal points and
so are not skew.
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surface (with signature (3, 3, 0)) sitting inside P(
∧2), and giving rise to the well-

known Plücker coordinates for lines. Points not on the quadric are non-simple

bivectors, also known as linear line complexes. Consult Figure 12. Linear line

complexes were first introduced by [Möb37] in his early studies of statics under

the name null systems.

8.1.2 Product of two euclidean lines

Here we present an account of the geometric product of two euclidean lines.

Justifications for the claims made can be found in the subsequent sections. Let

the two lines be Ω and Σ. Assume they are euclidean and normalized, i.e.,

Ω∧Σ 6= 0 and Ω2 = Σ2 = −1. Two euclidean lines determine in general a unique

third euclidean line that is perpendicular to both, call it Π. Consult Fig. 12,

right. ΩΣ consists of 3 parts, of grades 0, 2, and 4:

ΩΣ = 〈ΩΣ〉0 + 〈ΩΣ〉2 + 〈ΩΣ〉4
= Ω ·Σ + Ω×Σ + Ω ∧Σ

= cosα+ (sinαΠ + d cosαΠ⊥) + d sinαI

α is the angle between Ω and Σ, viewed along the common normal Π; d is the

distance between the two lines measured along Π (0 when the lines intersect).

d sinα is the volume of a tetrahedron determined by unit length segments on Ω

and Σ. Finally, Ω×Σ is a weighted sum of Π and Π⊥. The appearance of Π⊥

is not so surprising, as it is also a “common normal” to Ω and Σ, but as an ideal

line, is easily overlooked.

Does ΩΣ have a geometric meaning? Consider sandwich operators with

bivectors, that is, products of the form ΩXΩ̃ for simple euclidean Ω. Such a

product is called a turn since it is a half-turn around the axis Ω (see below, Sect.

8.1.5). And, in turn, the turns generate the full group E+(3) of direct euclidean

isometries ( [Stu91]. A little reflection shows that the composition of the two

turns ΩΣ will be a screw motion that rotates around the common normal Π

by 2α while translating by 2d in the direction from Σ to Ω (the translation is

a “rotation” around Π⊥). This is analogous to the product of two reflections

meeting at angle α discussed above in Sect. 7.4.

Analogous to the 2D case, we can easily calculate the motor that carries Σ

41



Σ1

Σ2
Σ = Σ1 Σ2+

= RP5 d

α

Π

Ω

Σ

Π

Figure 12: Left:The space of lines sits inside the space of 2-vectors as a quadric
surface L. Right : Product of two skew lines Ω and Σ involving the common
normals Π (euclidean) and Π⊥ (ideal).

exactly onto Ω. This is given by
√

ΩΣ =

̂(
1 + ΩΣ

2

)
.

The case of two intersecting lines. If the two lines are not skew, they have

a common point and a common plane and are linearly dependent: Ω ∧Σ = 0.

The common plane is given by (Ω ∧ e0) ∨ Σ; the common point P by P =

((Π ∧ e0) ∨Ω) ∧Σ where Π = 〈ΩΣ〉2 is the common normal.

We turn now to a rather detailed discussion of the structure and behavior of

non-simple bivectors. Readers with limited time and interest in such a treatment

are encouraged to skip ahead to Sect. 9.

8.1.3 The axis of a bivector

In 2D we used the following formula to normalize a 1- or 2-vector:

X̂ =
X√
|X2|

This was made easy since X2 in all cases was a real number. A non-simple

euclidean bivector satisfies Θ2 = Θ ·Θ + Θ∧Θ = s+ pI with s, p 6= 0. Since it’s

euclidean, s < 0. We saw above in Sect. 8.1 that p 6= 0 ⇐⇒ Θ is non-simple.

A number of the form s+ pI for s, t ∈ R is called a dual number. If we want to
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normalize a bivector using a formula like the one above, then we have to be able

to find the square root of dual numbers.

For a dual number d = s+ pI, s > 0, p 6= 0, define the square root

√
s+ pI =

√
s+

p

2
√
s
I

and verify that it deserves the name. Define

‖Θ‖ = u+ vI :=
√
−(Θ ·Θ + Θ ∧Θ)

Then Θ̂ := ‖Θ‖−1Θ and Θ̂2 = −1. We write Θ in terms of Θ̂:

Θ = ‖Θ‖Θ̂ = (u+ vI)Θ̂

= uΘ̂ + vΘ̂⊥

That is, we have decomposed the non-simple bivector as the sum of a euclidean

line Θ̂ and its orthogonal line Θ̂⊥.9 It is easy to verify that Θ̂× Θ̂⊥ = 0 so that

the two bivectors commute. We now apply this to computing the exponential of

a bivector that we need below in Sect. 8.1.6.

Remarks on the axis pair. Note that Θ̂ is not a normalized vector in the

traditional sense since it is no longer projectively equivalent to the original bivector.

Indeed, it arises by multiplying the latter by a dual number, not a real number.

The euclidean axis has a special geometric significance that will prove to be very

useful in the analysis of motors that follows.

Terminology. We call Θ̂ the euclidean axis and Θ̂⊥ the ideal axis of the

non-simple bivector Θ. Together they form the axis pair of the bivector. The

euclidean axis however is primary since the ideal axis can be obtained from it by

polarizing: Θ̂I, but not vice-versa.

8.1.4 The exponential of a non-simple bivector

The existence of an axis pair for an non-simple bivector is the key to understanding

its exponential. Applying the decomposition of Θ = uΘ̂ + vΘ̂⊥ as an axis pair

9Θ⊥ can be thought of as the ideal line consisting of all the directions perpendicular to Θ.
For example, if Θ is vertical, then Θ⊥ is the horizon line.
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we can write

eΘ = evΘ̂+vΘ̂⊥

Since Θ and Θ⊥ commute (see above), the exponent of the sum is the product of

the exponents:

eΘ = euΘ̂+vΘ̂⊥ = euΘ̂evΘ̂
⊥

= evΘ̂
⊥
euΘ̂

where the third equality also follows from commutivity. We can then apply what

we know about the exponential of simple bivectors from Sect. 8.1 to obtain:

eΘ = (cosu+ sinuΘ̂)(1 + vΘ̂I) (1)

= cosu+ sinuΘ̂ + v cosuΘ̂I− v sinuI (2)

= (cosu− v sinuI) + (sinu+ v cosuI)Θ̂ (3)

We will apply this formula below when we compute the logarithm of a motor m.

8.1.5 Bivectors and motions

Simple bivectors, simple motions. We saw in the discussion of 2D PGA that

bivectors (points) play an important role in implementing euclidean motions:

every rotation (translation) can be implemented by exponentiating a euclidean

(ideal) point to obtain a motor. This was a consequence of the fact that sandwiches

with 1-vectors (lines) implement reflections and even compositions of reflections

generate all direct isometries. The same stays true in 3D: a sandwich with a

plane (1-vector) implements the reflection in that plane. Composing two such

reflections generates a direct motion (rotation/translation around the intersection

line) that is represented by a 3D motor, completely analogous to the 2D case.

Using the formula for the exponential of a simple bivector from Sect. 8.1, we

derive the formulas for the rotator around a simple euclidean bivector Ω by angle

α: e
α
2

Ω = cos α2 +sin α
2 Ω. The translator e

d
2
Ω∞ = 1+ d

2Ω∞ produces a translation

of length d perpendicular to the ideal line Ω∞.

Non-simple bivectors, screw motions. But there are other possibilities in

3D for direct motions than just rotations and translations. The generic motion is

a screw motion that composes a rotation around a 3D line, called its axis, with a

translation in the direction of the line. To be precise, the axis of a screw motion

44



R*+

a+bI
1

gg=1~ Λ2

bivectors

3,0,1R

3,0,1

M3,0,1

*

D

Figure 13: Venn diagram showing the inclusion relationships of the algebra
P(R∗3,0,1), its even subalgebra P(R∗+3,0,1), the dual numbers D, the motor group

M3,0,1, and the bivectors
∧2.

is the unique euclidean line fixed by the screw motion. The motion is further

characterized by its pitch, which is the ratio of the angle turned (in radians) to

the distance translated.

8.1.6 The motor group

Every direct isometry is the result of composing an even number of reflections:

hence such a motor lies in the even sub-subalgebra, consisting of elements of even

grade and written P(R∗+3,0,1). An element m of the even sub-algebra is a motor

if it satisfies mm̃ = 1; such elements form a group, written M3,0,1 ⊂ P(R∗+3,0,1)

called the motor group. The motor group is more generally called the Spin group

of the geometric algebra. It’s a 2:1 cover of the direct Euclidean group E+(3)

since m and −m yield the same isometry. Elements of the form eΩ,Ω ∈
∧2 are

in M3,0,1 since ẽΩ = eΩ̃ = e−Ω and eΩe−Ω = 1. Fig. 13 illustrates the various

inclusions involved among the algebra, the even algebra, the motor group, the

dual numbers, and the bivectors. For example, a normalized simple bivector is

also a motor: used as a sandwich, it produces a rotation of π radians around the

line it represents.
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Calculating the logarithm of a motor. The logarithm Θ of a motor m

is an algebra element that satisfies m = eΘ. We now show how to find such a

logarithm. We know the normalized motor m contains only even-grade parts:

m = 〈m〉0 + 〈m〉2 + 〈m〉4 (4)

= s1 + Θ + p1I (5)

= (s1 + p1I) + (s2 + p2I)Θ̂ (6)

In the last line we have substituted Θ = ‖Θ‖Θ̂ (see above Sect. 8.1.3). Comparing

coefficients in Eq. 3 and Eq. 6 we see that we have an overdetermined system:

from the four quantities {s1, p1, s2, p2} we have to deduce the two parameters

{u, v}. This leads to the following values for u and v:

u := tan−1(s2, s1), v :=
p2

s1
for s1 6= 0 (7)

u := tan−1(−p1, p2), v :=
− p1

s2
otherwise (8)

Note that either s1 6= 0 or s2 6= 0 since otherwise m2 = 0. Then

e(u+vI)Θ̂ = m

(u+ vI)Θ̂ is the logarithm of m. It is unique except for adding multiples of 2π to

u. The pitch of the screw motion is given by the proportion v : u. The logarithm

shows that m can be decomposed as

euΘ̂evΘ̂
⊥

that is, the composition (in either order) of a rotation through angle 2u around

the axis Θ̂ and a translation of distance 2v around the polar axis Θ̂⊥.

Axis of bivector or axis of screw motion? These formulas make clear that

the two uses of axis that we have encountered are actually the same. The axis

pair of a screw motion (considered as the unique pair of invariant lines) is the

axis pair of its bivector part.

Connection to Lie groups and Lie algebras. By establishing the logarithm
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function (unique up to multiples of 2π), we have established that the exponential

map exp :
∧2 →M3,0,1 is invertible. Hence we are justified in identifying M3,0,1

as a Lie group and
∧2 as its Lie algebra, and can apply the well-developed Lie

theory to this aspect of PGA.

This concludes our introductory treatment of the geometric product in

P(R∗3,0,1) . We turn now to its formulation of rigid body mechanics, whose

essential features were already known to Plücker and Klein in terms of 3D line

geometry ( [Zie85]).

8.2 Kinematics and Mechanics in P(R∗3,0,1)

Here we give a very abbreviated overview of the treatment of kinematics and rigid

body mechanics in PGA in the form of a bullet list.

1. Kinematics deal with continuous motions in E3, that is, paths in M3,0,1.

Let g(t) be such a path describing the motion of a rigid body.

2. There are two coordinate systems for a body moving with g: body and space.

An entity x can be represented in either: Xc/Xs represents body/space

frame.

3. The velocity in the body Ωc := g̃ġ; in space, Ωs := ġg̃. Ωc and Ωs are

bivectors.

4. A, the inertia tensor of the body, is a 6D symmetric bilinear form

J−1(A(Ωc)) = Πc and Ωc = A−1(J(Πc))

where Πc is the momentum in the body and J is Poincaré duality map.10

5. The kinetic energy E satisfies E = Ωc ∧Πc.

6. Let Φc represent the external forces in body frame. Then Ė = −2Φc ∨Ωc.

7. The work done can be computed as

w(t) = E(t)− E(0) =

∫ t

0
Ėds = −2

∫ t

0
Φc ∨Ωcds

8. The Euler equations of motion for the of the motion free top one obtains

10A actually maps to the dual exterior algebra: A :
∧2 →

∧2∗, we compose it with the duality
map J to bring the result back to P(R∗3,0,1).
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the following Euler equations of motion:

ġ = gΩc (9)

Ω̇c = A−1(Φc + 2A(Ωc)×Ωc) (10)

Theoretical discussion. The traditional separation of both velocities and

momenta into linear and angular parts disappears completely in PGA, further

evidence of its polymorphicity. The special, awkward role assigned to the coor-

dinate origin in the calculation of angular quantities (moment of a force, etc.)

along with many mysterious cross-products likewise disappear.

What remains are unified velocity and momentum bivectors that represent

geometric entities with intuitive significance. We have already above seen how

the velocity can be decomposed into an axis pair that completely describes the

instantaneous motion at time t. Similar remarks are valid also for momentum

and force bivectors. We focus on forces now but everything we say also applies to

momenta. The simple bivector representing a simple force is the line carrying the

force; the weight of the bivector is the intensity of the force. A force couple is

a simple force carried by an ideal line (like a translation is a “rotation” around

an ideal line). Systems of forces that do not reduce to a simple bivector can be

decomposed into an axis pair exactly as the velocity bivector above, combining a

simple force with an orthogonal force couple. This axis pair has to be interpreted

however in a dynamical, not kinematical, setting. Further discussion lies outside

the scope of these notes.

Practical discussion. The above Euler equations equations behave particularly

well numerically: the solution space has 12 dimensions (the isometry group is

6D and the momentum space (bivectors) also) while the integration space has

14 dimensions (P(R∗+3,0,1) has dimension 8 and the space of bivectors has 6).

Normalizing the computed motor g brings one directly back to the solution space.

In traditional matrix approaches as well as the CGA approach ( [LLD11]), the

co-dimension of the solution space within the integration space is much higher

and leads typically to the use Lagrange multipliers or similar methods to maintain

accuracy. This advantage over VLAAG and CGA is typical of the PGA approach

for many related computing challenges.

See [Gun11b] or [Gun11a], Ch. 9, for details on rigid body mechanics in
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P(R∗3,0,1). For a compact, playable PGA implementation see [Ken17a].

9 Automatic differentiation

[HS87] introduces the term “geometric calculus” for the application of calculus to

geometric algebras, and shows that it offers an attractive unifying framework in

which many diverse results of calculus and differential geometry can be integrated.

While a treatment of geometric calculus lies outside the scope of these notes,

we want to present a related result to give a flavor of what is possible in this

direction.

We have already met above, in Sect. 8.1.3, the 2-dimensional sub-algebra of

P(R∗n,0,1) consisting of scalars and pseudoscalars known as the dual numbers. It

can be abstractly characterized by the fact that 12 = 1 while I2 = 0. Already

Eduard Study, the inventor of dual numbers, realized that they can be used to do

automatic differentiation ( [Stu03], Part II, §23). A modern reference describes

how [Wik]:

Forward mode automatic differentiation is accomplished by augment-

ing the algebra of real numbers and obtaining a new arithmetic. An

additional component is added to every number which will represent

the derivative of a function at the number, and all arithmetic operators

are extended for the augmented algebra. The augmented algebra is

the algebra of dual numbers.

This extension can be obtained by beginning with the monomials. Given pk(x) =

xk, define

pk(x+ yI) := (x+ yI)k = xk + nxn−1yI

All higher terms disappear since I2 = 0. Setting y = 1 we obtain

pk(x+ I) = pk(x) + ṗk(x)I

That is, the scalar part is the original polynomial and the pseudoscalar, or dual,

part is its derivative. In general if u is a function u(x) with derivative u̇, then

pk(u+ u̇I) = pk(u) + ṗk(u)I
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Thus, the coefficient of I tracks the derivative of pk. Extend these definitions to

polynomials by additivity in the obvious way. Since the polynomials are dense in

the analytic functions, the same “dualization” can be extended to them and one

obtains in this way robust, exact automatic differentiation. One can also handle

multivariable functions of n variables, using the (n) ideal n−vectors Ei for i > 0

(representing the ideal directions of euclidean n-space) as the nilpotent elements

instead of I. For a live JavaScript demo see [Ken17a].

10 Implementation issues

Our description would be incomplete without discussion of the practical issues

of implementation. This has been the focus of much work and there exists a

well-developed theory and practice for general geometric algebra implementations

to maintain performance parity with traditional approaches. See [Hil13]. PGA

presents no special challenges in this regard; in fact, it demonstrates clear ad-

vantages over other geometric algebra approaches to euclidean geometry in this

regard ( [Gun17b]). For a full implementation of PGA in JavaScript ES6 see

Steven De Keninck’s ganja.js project on GitHub [Ken17b] and the interactive

example set at [Ken17a].

11 Comparison

Table 6 encapsulates the foregoing results in a feature-by-feature comparison with

the standard (VLAAG) approach. It establishes that PGA fulfills all the features

on our wish-list in Sec. 2, while the standard approach offers almost none of them.

(For a proof that PGA is coordinate-free, see the Appendix in [Gun17a].)

11.1 Conceptual differences

How can we characterize conceptually the difference of the two approaches leading

to such divergent results?

• First and foremost: VLAAG is point-centric: other geometric primitives

of VLAAG such as lines and planes are built up out of points and vectors.

PGA on the other hand is primitive-neutral : the exterior algebra(s) at its
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PGA VLAAG

Unified representation for points, lines,
and planes based on a graded exterior
algebra; all are “equal citizens” in the
algebra.

The basic primitives are points and vec-
tors and all other primitives are built
up from these. For example, lines in
3D sometimes parametric, sometimes w/
Plücker coordinates.

Projective exterior algebra provides ro-
bust meet and join operators that deal
correctly with parallel entities.

Meet and join operators only possible
when homogeneous coordinates are used,
even then tend to be ad hoc since points
have distinguished role and ideal ele-
ments rarely integrated.

Unified, high-level treatment of eu-
clidean (“finite”) and ideal (“infinite”)
elements of all dimensions. Unifies e.g.
rotations and translations, simple forces
and force couples.

Points (euclidean) and vectors (ideal)
have their own rules, user must keep
track of which is which; no higher-
dimensional analogues for lines and
planes.

Unified representation of isometries
based on sandwich operators which act
uniformly on points, lines, and planes.

Matrix representation for isometries has
different forms for points, lines, and
planes.

Same representation for operator and
operand: m is the plane as well as the
reflection in the plane.

Matrix representation for reflection in m
is different from the vector representing
the plane.

Compact, universal expressive formulas
and constructions based on geometric
product (see Tables 3, 4, and 5) valid
for wide range of argument types and
dimensions.

Formulas and constructions are ad hoc,
complicated, many special cases, sepa-
rate formulas for points/lines/planes, for
example, compare [Gla90].

Well-developed theory of implementa-
tion optimizations to maintain perfor-
mance parity.

Highly-optimized libraries, direct map-
ping to current GPU design.

Automatic differentiation of real-valued
functions using dual numbers.

Numerical differentiation

Table 6: A comparison of PGA with the standard VLAAG approach.
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base provide native support for the subspace lattice of points, lines and

planes (with respect to both join and meet operators).

• Secondly, the projective basis of PGA allows it to deal with points and

vectors in a unified way: vectors are just ideal points, and in general, the

ideal elements play a crucial role in PGA to integrate parallelism, which

typically has to be treated separately in VLAAG. The existence of the ideal

norm in PGA goes beyond the purely projective treatment of incidence,

producing polymorphic metric formulas that, for example, correctly handle

two intersecting lines whether they intersect or are parallel (see above

Sect. 7.2).

• The representation of isometries using sandwich operators generated by

reflections in planes (or lines in 2D) can be understood as a special case

of this “compact polymorphicity”: the sandwich operator gXg̃ works no

matter what X is, the same representation works whether it appears as

operator or as operand, and rotations and translations are handled in the

same way.

11.2 The expressiveness of PGA

All these conceptual differences contribute to the astounding richness of the PGA

syntax in comparison to VLAAG, a richness exemplified in the formulas of tables

3, 4, and 5. Each of the conceptual differences in the above list can be thought

of as a set of distinctions that are embedded in a unified form within the PGA

syntax: points/lines/planes, euclidean/ideal, operator/operand, etc. This leads to

having many more basic expressions for modeling geometry than in VLAAG, and

they all combine meaningfully with each other. To the best of our knowledge these

formula collections establish PGA as the “world champion” among all existing

frameworks for euclidean geometry with respect to compactness, completeness,

and polymorphicity. Compare [Gla90] for selected VLAAG analogs. Readers who

know of a competitive formula collection are urged to drop the author an email

with a pointer to it. We also expect that there are more formulas waiting to be

discovered (after all, here we’ve only considered the 2-way products and a small

subset of the 3-way products).

Non-euclidean metrics. The expressiveness of PGA takes on a wider dimen-

sion when we recall that PGA is actually a family of geometric algebras. We
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Figure 14: Doing geometry in the hyperbolic plane using the PGA P(R∗2,1,0).

have focused attention here on euclidean PGA. The other members of the family

model non-euclidean spaces, notably, spherical and hyperbolic space. Simply

by specifying a different value for e2
0, these other PGA’s can also be accessed.

Many of the formulas and constructions included in these notes can be applied

unchanged to these other metric spaces (for example, the treatment of rigid body

mechanics included above is metric-neutral in this sense, as are many of the

constructions in the tables) or with minor and instructive differences with respect

to EPGA. The example of spherical geometry in Sect. 6.3 illustrates the power of

this approach. [Gun11a] develops all its PGA results in the setting of all three

classical metrics.

11.3 The universality of PGA

The previous section highlighted the structural advantages enjoyed by PGA over

VLAAG. We strengthen this argument in this section by showing that alternate

approaches to euclidean geometry are largely present already in PGA as parts of

the whole.
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11.3.1 Vector algebra

The previous section has already suggested that VLAAG can be seen less as a

direct competitor to PGA than as a restricted subset. Indeed, restricting attention

to the vector space of n-vectors (sometimes written
∧n) in PGA essentially yields

standard vector algebra. Define the “points” to be euclidean n-vectors (P2 6= 0)

and “vectors” to be ideal n-vectors (P2 = 0). All the rules of vector algebra

can be then derived using the vector space structure of
∧n equipped with the

standard and ideal PGA norms (assuming normalized arguments as usual). The

absence of the geometric product in this context makes clear why VLAAG is so

much “smaller” than PGA.

Unified Rn and En. This embedding of vector algebra in PGA also comes

with a nice geometric intuition absent in traditional vector algebra: the vectors

make up the ideal plane bounding the euclidean space of points, i. e., points and

vectors make up a connected, unified space (topologically equivalent to projective

space RPn). Furthermore, intuitions developed in vector algebra such as “Adding

a vector to a point translates the point.” have natural extensions in PGA: adding

an ideal line (plane) to a euclidean line (plane) translates the line (plane) parallel

to itself11. Such patterns are legion.

11.3.2 Linear algebra and analytic geometry

Note that PGA is fully compatible with the use of linear algebra. A linear map

on the 1-vectors has induces linear maps on all grades of the algebra that can be

automatically computed and applied. The big difference to VLAAG is that linear

algebra no longer is needed to implement euclidean motions – a role for which

it is not particularly well-suited. We envision the development of an analytic

geometry based on the full extent of PGA, not just on the small subset present in

VLAAG, and would have at its disposal the geometric calculus sketched in Sect. 9.

Traditional analytic geometry would make up a small subset of this extended

analytic geometry, like vector algebra makes up a small part of PGA proper.

11Whereby the two lines must be co-planar.
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11.3.3 Exterior algebra

The underlying graded algebra structure of PGA can be thought of as being

inherited from the exterior algebra. The wedge product is just the highest grade

part of the geometric product, and implements the meet operator in PGA. The

join operator is available from the dual exterior algebra via Poincaré duality (see

Sect. 5.10).

11.3.4 Quaternions and dual quaternions

Many aspects of PGA are present in embryonic form in quaternions and dual

quaternions, but they only find their full expression and utility when embedded

in the full algebra PGA. Indeed, the quaternion and dual quaternion algebras are

isomorphically embedded in the even sub-algebra P(R∗+n,0,1) for n ≥ 3.

Integrated with points and planes. The advantage of the embedding in

PGA are considerable. The full algebraic structure of PGA provides a much

richer environment than these quaternion algebras alone. At the most basic level,

quaternion and dual quaternion sandwich operators only model direct isometries;

the embedding in PGA reveals how they arise naturally as even compositions

of the reflections provided by sandwiches with 1-vectors. Furthermore, few of

the formulas in Tables 3, 4, and 5 are available in the quaternion algebras alone

since the latter only have natural representations for primitives of even grade

(essentially bivectors for n = 2 and n = 3). For example, in PGA, you can

apply all sandwiches to geometric primitives of any grade. In contrast, one of the

“mysteries” of contemporary dual quaternion usage is that there are separate ad

hoc representations for points, lines, and planes and slightly different forms of the

sandwich operator for each in order to be able to apply euclidean direct isometries.

These eccentricities disappear when, as in PGA, there are native representations

for points and planes, see [Gun17b], §3.8.1.

Demystifying ε and the legacy of William Clifford. The PGA embedding

clears up other otherwise mysterious aspects of current dual quaternion practice.

Consider the dual unit ε satisfying ε2 = 0. In the embedding map, it maps to the

pseudoscalar I of the algebra (for details see [Gun11a], §7.6), perhaps tarnishing

the mystique but replacing it with a deeper understanding of the genesis of the

dual quaternions. It is also here worth noting that William Clifford invented
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both dual quaternions (or biquaternions as he called them) and geometric algebra.

That he did not also discover their happy reunion in EPGA is most likely due to

his early death at age 34. At the time of his death neither the dual construction

of the exterior algebra nor the degenerate metric (both necessary ingredients of

eucidean PGA) had been introduced to the study of geometric algebras.

12 Conclusion

We have established that euclidean PGA fulfills the developers’ wish list with

which we began these notes, offering numerous advantages over the existing

VLAAG approach. The natural next question for interested developers is, what

is involved in migrating to PGA from one of the alternatives discussed above?

In fact, the use of homogeneous coordinates and the inclusion of quaternions,

dual quaternions, and exterior algebra in PGA means that many practitioners

already familiar with these tools can expect a gentle learning curve. Furthermore,

the availability of a JavaScript implementation on GitHub ( [Ken17b]) and the

existence of platforms such as Observable notebooks [Bos18] means that interested

users, equipped with the attached “cheat sheets” for 2D and 3D PGA, can quickly

get to work to prototype and share their applications. Readers who would like

to deepen their understanding of the underlying mathematics are referred to the

literature [Gun11c], [Gun11a], [Gun17b], [Gun17a]. We intend also to establish an

on-line presence for PGA that will facilitate the exchange of information among

the community of users, that we will announce at the course meeting in Los

Angeles in July 2019.
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