{ 3D PROJECTIVE GEOMETRIC ALGEBRA }

3D PGA CHEAT SHEET SIGGRAPH 2019 COURSE NOTES

BASICS GEOMETRY NORMS & MOTORS
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FOOTNOTES

1. Euclidean, Elliptic, Hyperbolic space: By choosing different values for
e3 you obtain PGA also for elliptic and hyperbolic metric spaces. Many
formulas on this sheet also apply to these spaces; the differences can be
traced back to the differences in the ideal elements.
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2. Duality: See § 5.10 of the Course Notes.

3. Reverse: The reverse X of an element X is the element obtained by
reversing all the products of 1-vectors that occur in it.

4. Normalize: The normalization operator x does different things, depend-
ing on its argument; they all have in common that the result is normalized
in the category it belongs to. Typically a normalized element n satisfies
nn = +1.

5. Intersecting lines: See § 8.1.2 of the Course Notes.

6. Remarks on projection: See § 7.2 of the Course Notes.

7. Outer and Inner product: s and ¢ are the grades of a and b, respectively.

8. Ideal norm: See § 7.1 of the Course Notes.

9. Logarithm of a motor: if s = 0, the motor is a pure translation and its
logarithm logm = ﬁ — 1. Else if (m)o = 0, the motor is a turn with
logarithm logm = § — @ See § 8.1.6 of the Course Notes.

10. Edge loop: the edges (lines) £; of an edge loop are found by joining
adjacent normalized points, £; = P, v Piy1, where the n + 1-th point is
the same as the first (the area formula works for edge loops contained in a
single plane).

11. Triangle mesh: the faces (planes) f; of a triangle mesh are found by
joining the three points of each triangle (with consistent winding order),
fi = 1311 \ f’lz \2 f)lg

Questions, comments, corrections ? Contact the authors:
Steven De Keninck (enkimute@gmail.com)
Charles Gunn (projgeom@gmail.com)

IMPLEMENTATION

C++, C#, Rust, Python and javascript-implementations, updated course
notes and cheat-sheets on bivector.net


https://bivector.net

