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Physics in the Plane-Based Geometric Algebra PGA

In our introductory guide [13], PGA was treated as a branch of geometry in the usual math-
ematical sense: geometric planes, lines or points in space without necessary physical reality.
In this new guide, we will use those algebraic elements to model physical objects and their
motions under forces.

This extension of PGA to physics is rather specific in its techniques, and new intermediate
concepts become the basic algebraic blocks for modelling. There will be no new algebra and
we refer for the basics to [13], but we will make that known algebra correspond with real-
world physics. We will find that we can improve the classical way of computing in physics
considerably, in three ways:

• PGA integrates geometric primitives and the motion operators acting on them;

• PGA requires only half the number of physical variables;

• PGA produces algorithms that are agnostic to the dimension of physical space.

The combination of these properties is especially handy, and leads to compact and robust
code, notably not requiring a distinction between 2D and 3D in its primitives or functions.
While this powerful integration is new, the compact PGA description of motion operators is
very reminiscent of other frameworks such as Screw Theory and Spatial Vector Algebra (both
with 19th century provenance). Somehow, those missed a natural embedding in the fully
unified framework of PGA; we will see how close they came.

So, this guide helps you make a fresh start in physical modelling. We show how to model
velocity, momentum and forces in an integrated manner that no longer artificially separates
the translational from the rotational (and requires no prior choice of space dimensions). The
strange and perhaps cringeworthy ‘forque’ in the title is an embodiment of that: we will
define a dual bivector that encapsulates all of force and torque combined, and we show the
advantages of that in description and computation.

In two additionally included Appendices A and B (which may be consulted from the
main text by linked pointers), we pull the integrated PGA elements apart into their classical
constituents, just to show that PGA really provides the same description of Nature as clas-
sical physics. At the same time, doing so exposes explicitly the implicit non-computational
(because non-algebraic) rules that one needed to learn to apply the classical formalism.

To show that the PGA remodelling is indeed effective, we provide programs using it, for
you to play with. These will have the amazing property that they work in any dimension;
that also means that they can be specified in the lowest dimension in which the problem
makes sense. For instance, we show how the full 3D motion of a massive cube on a spring
in gravity is computed by a program that literally encodes the whole situation in 1D. When
this 1D program is given 3D initial conditions, it employs them to fill the available 3D space
with the appropriate Newtonian motion.

Our focus audience for this text is workers in the computer sciences (notably computer
graphics and robotics), who will enjoy those explicit computational aspects; but in Ap-
pendix B we also develop some pen-and-paper techniques to solve the equations exactly (in
the simpler cases) to show the convenience of PGA to classical physics and to verify the
precision of the numerical methods.
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If this guide makes you want to know more, you can always find additional tutorial ma-
terial, lectures, software and even PGA merch at our home site https://bivector.net.

Leo Dorst & Steven De Keninck
Amsterdam & Bornem, 2022

6

https://bivector.net


Chapter 1

Elements of Physical Geometry

When we use PGA in physics, our elements may have acquire mass, vectors may represent
velocities or momenta, bivectors may be angular momenta or forces. Processing them requires
some care in their units and dimensional properties (here we use ‘dimension’ in the sense of
‘physical measurement dimension’). In this section we treat some of those preliminaries on
dimensionality and representation of the basic geometrical elements, before we tackle the
physics.

1.1 Planes are Vectors

When one has chosen as spatial reference an (arbitrary) origin at a point O, the simplest
representable plane is a plane p through that origin. It is represented in PGA as a purely
Euclidean vector n (refer to [13] if this is new to you). In more classical applied linear
algebra, we would call n the normal vector of the plane p; but in PGA, n simply is the plane
p through the origin.

p = n.

This change of perspective is important: a normal vector exists only at the origin, a plane
may be anywhere; we should not let our representation get in the way of the reality we want
to describe, so we will move the plane very soon!

We commonly normalize a plane p to have p2 = 1, so for this origin plane n2 = 1. Such
a normalized plane is a dimensionless mathematical element. We would denote a weighted
plane at the origin as αn. In 3D, this plane is the dual (not the reciprocal!) of a Euclidean
area 2-blade, and so α should have the dimension measure of [area]. A density, with dimension
measure of 1/[area], can then be represented by the reciprocal vector p−1. (In d dimensions,
the hyperplane αn would give α the dimension of [length]d.)

Planes moved outside the origin require additional specification of their distance δ to
the (arbitrary) origin O. In homogeneous coordinates, this would be done by extending the
parameters to [n,−δ]. In PGA, we explicitly denote the basis vector ε of the extra dimension,
and write p = n − δε. This ε anti-commutes with the Euclidean basis vectors, and satisfies
ε2 = 0, see [13].1

1We have changed the extra homogeneous basis vector relative to [13] (versions less than 2.0); our current
ε is −e relative to the e used in that source (which would denote the plane as p = n + δ e). The new
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1.2. POINTS ARE TRIVECTORSCHAPTER 1. ELEMENTS OF PHYSICAL GEOMETRY

This representation p = n − δε is consistent with translating a normalized plane away
from the origin to pass through a point at location q. Indeed, applying the translation versor
Tt ≡ exp(−εt/2) = 1− εt/2 to n gives:

p = (1− εq/2) n (1 + εq/2) = n− (q · n) ε = n− δ ε,

where δ = q · n. Since the normal vector n has been normalized, the first term is a dimen-
sionless quantity; but then so should the second term be. Since δ has the dimension measure
of [length], we find that the extra representational vector ε should be considered to have
the dimension [1/length]. Geometrically, ε is the representation of the ‘plane at infinity’ (we
called it the ‘vanishing plane’ in [13]); it apparently contains a length scale for the space.
By contrast, the Euclidean unit vectors ei, which are a basis to specify any n, represent
coordinate planes through the origin and are dimensionless mathematical quantities.

We see the dimensional nature of ε as [1/length] also in the motors (aka versors or rotors
or spinors) which act as motion operators. The translation motor exp(−εq/2) should have
a dimensionless argument in its exponent; since the translation parameter vector q has the
dimension measure of [length], this also confirms the [1/length] dimensionial property of ε.
When we introduce a velocity v of translation, with dimension measure of [length/time], we
can rewrite the exponent as:

exp(−εv t/2),

with t the amount of [time] that was used by the motor to obtain the required translation.

1.2 Points are Trivectors

A point in 3D PGA is represented as a trivector, since it can be formed as the intersection of
three planes (see [13], in d-dimensional PGA, it is a d-vector) by means of the meet operation,
represented algebraically as the wedge product.

1.2.1 Representing a Finite Point

The normalized point at the (arbitrary) origin O in 3D PGA may be formed by the inter-
section of the three coordinate planes e1, e2, e3, and is therefore represented by the purely
Euclidean trivector:

O = e1 ∧ e2 ∧ e3 = e1 e2 e3 ≡ I3,

with I3 denoting the normalized Euclidean pseudoscalar in a coordinate-free manner. We
prefer to use the notation O since we aim at coordinate-free dimension-agnostic geometry,
but may sometimes use I3 when we do a coordinate calculation in 3D. The normalized
geometrical point at the origin is thus a dimensionless quantity; and since all points can be
made from it through translation, so are all points.

practice corresponds much more nicely with programs written in homogeneous coordinates and prevents
many headaches in sign. When used in programs, it is customary to have ε as the zeroth basis vector ε = e0,
allowing index notations like e01 for ε e1.

8
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When we move the point to a location q, the trivector Q representing it is found by
applying a translation motor to O. This gives

Q = (1− εq/2)O (1 + εq/2) = (1− εq)O = O + q I, (1.1)

where in the final rewriting we employ the pseudoscalar of d-dimensional PGA, defined as

PGA pseudoscalar: Id ≡ εO = ε Id,

and is a multivector of grade (d+ 1) (we indexed it with the space it represents rather than
its grade). We will often write just I for Id if the dimension d is clear from the context
and/or does not feature in the computations. In algorithms, we will denote the basis vector
ε by index 0, as e0, to allow shorthand like I3 = e0123. Note that the PGA pseudoscalar
I contains ε, and therefore has the measure of [1/length]; in eq.(1.1), the combination qI
is dimensionless, so the choice of pseudoscalar effectively fixes the units for the length of q,
viewed as a displacement.

Alternatively, you can construct the point at location q = q1e1 + q2e2 + q3e3 as the
intersection of the planes e1 − q1ε, e2 − q2ε and e3 − q3ε, which gives the same result:

(e1 − q1ε) ∧ (e2 − q2ε) ∧ (e3 − q3ε)

= e1 ∧ e2 ∧ e3 − q1 ε ∧ e2 ∧ e3 − q2 ε ∧ e3 ∧ e1 − q3 ε ∧ e1 ∧ e2)

= O − ε (q1 e2 ∧ e3 + q2 e3 ∧ e1 + q3 e1 ∧ e2)

= O − εq I3

= O + q I3.

The additive representation O+q I shows that the point could also be constructed by adding
a properly scaled ‘vector direction’ qI (see below) to the point at the origin (but that method
generalizes less directly to non-point elements).

These expressions represent the point Q relative to the origin O, which was arbitrary.
Yet, perhaps surprisingly, the actual value of the trivector Q is independent of the choice of
origin. For when we introduce as our preferred origin an alternative location C with location
vector c, so that C = O + c I, we can rewrite Q as:

Q = O + q I
= O + (c + (q− c)) I
= C + (q− c) I
≡ C + r I,

We emphasize that the algebraic value of the point trivector Q is the same, but it is now
parametrized from C by the relative position vector r ≡ q− c, as it should. This is how the
unchanged geometrical pointQ looks if you were placing yourself at location C: it is at relative
location r. It has the same split form of ‘point plus relative location times pseudoscalar’ as
looking at it from the origin, or from any other point.

We will call this rewriting of the algebraic element Q into terms involving a point C and
‘something more’ a point split. This ‘reparametrization without changing the element’ is
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a useful feature of PGA that the classical vector representation of points does not provide.
The commonly used ‘homogeneous coordinates’ for a point share the same origin-independent
property, but it is good to realize this explicitly, since their emphasis on coordinate repre-
sentations tends to hide it. We also observe that the (d + 1)-dimensional pseudoscalar Id
satisfies

Id ≡ ε Id = εO = εQ = εC,

so it can be written in terms of any normalized point. It is thus independent of the choice of
origin, as it should be, since it is an algebraic property of the whole space.

All finite points in the above representation are normalized: they satisfy O2 = Q2 = C2 =
I2
d = (−1)d(d−1)/2. Hence for 2D and 3D we get Q2 = −1 as the square of a normalized point.

1.2.2 Representing a Vanishing Point

A vanishing point Vu in direction u is represented as2

Vu = u Id.

Comparing to eq.(1.1), a direction is thus ‘a point without an O part’; you can read the Id as
‘ideal’, if you wish, since in projective geometry such points would be called ideal points. The
multiplicative occurrence of the pseudoscalar shows that a vanishing point is ‘purely ideal’:
it has no finite positional aspects.

1.2.3 Massive Points

We repeat that in PGA, a geometrical point Q at location q is represented by the trivector

Q = O + q Id = e1 e2 e3 − q1 ε e2 e3 − q2 ε e3 e1 − q3 ε e1 e2.

When written out in 3D PGA, the point thus has coordinates (1, q1, q2, q3) on the basis
(
I3,

e1I3, e2I3, e3I3

)
=
(
e123, e032, e013, e021

)
(note the swapping of some of the Euclidean

indices). So if that trivector basis is implicitly understood, this coordinate representation
of a point is in practice just like homogeneous coordinates. The same clearly holds in d-
dimensional PGA relating to d-dimensional homogeneous coordinates. Note that the coeffi-
cients qi with dimension measure of [length] are used on basis 3-blades with ε of dimension
measure [1/length], and the dimensionless ei factors. So indeed, a geometrical point is a
dimensionless quantity.

A physical point has a mass, which we will incorporate as the algebraic weight factor of
the d-vector:

Point Q with mass m: mQ = m (O + q I).

We can now consider the dimension measure of the physical point trivector to be [mass]. The
Euclidean unit pseudoscalar O is still dimensionless, and so is the geometric point Q. At the
usual academic risk of sounding pedantic, we should perhaps get into the habit of denoting
a mass of 1 unit at Q as 1Q (or 1.00Q), rather than as Q, to denote that this element no
longer represents merely the purely algebraic element Q. Even better, write it like Q kg (or
your own preferred non-international mass unit, such as ‘lb’).

2This may appear to differ in a sign from early versions of [13], but that text uses another pseudoscalar
based on e ≡ −ε.
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Figure 1.1: Objects of 3D PGA and their two possible orientation assignments: internal and
external. Orientation type shows in the effect of reflections. Blue: oriented element; green:
orthogonal reflection; purple: parallel reflection (orthogonal to exactly one factor). Left half:
join-based, right half: meet-based.

1.3 Two Types of 3D Lines

All geometric elements of PGA come in two types of orientations: internal and external, see
Figure 1.1. For a plane, the normal vector is an external way of denoting its orientation,
useful for discriminating its sides. By contrast, a handedness symbol within the plane is an
internal orientation. The two types of planes reflect differently; an externally oriented mirror
reflected in itself changes sign, an internally oriented mirror does not.

Similarly, there are two types of lines: the ones you move along (internally oriented), and
the ones you move around (external orientation). In 3D, there are thus two ways to construct
lines: as the intersection of two planes, and as the connection of two points. They both lead
to a bivector representation, one dual to the other. In other dimensions, the situation is less
confusing (since the grades of the types then differ), and therefore a slight generalization,
even if just to 2D, helps inform the 3D subtleties. So let us look beyond 3D.

1.3.1 Hyperlines as Meet of Planes: 2-vectors

The outer product of two planes n1 and n2 at the origin in 3D produces by intersection the
element

L = n1 ∧ n2. (1.2)

Geometrically in 3D, this is a line, which we might call the meet line of the planes. But in 2D
the intersection of two 2D hyperplanes (there better known as ‘lines’) produces a point. When

11
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talking across dimensions, we prefer to use the term hyperline for the geometric semantics of
a 2-blade.

In 3D, such a 2-blade meet line can be used in an exponential to generate the motion that
keeps L invariant: a rotation if both planes are non-ideal, a translation if either is ideal or
the two planes are parallel (see [13]). In 2D, the exponentiation of the meet hyperline (which
there is better known as a ‘rotation center’) similarly generates a rotation (when the point
is finite) or a translation (when the point is ideal). We could borrow the commonly used
term ‘axis’ to denote this usage of the hyperlines – if you are willing to see a planar point as
a 2D rotation axis. However, in dynamics, there are multiple axes (for the body shape, the
rotational motion, or the angular momentum), so syntax and semantics become confused.
For this tutorial text, the term ‘hyperline’ is used as the factual term for the geometric
element; that also serves as a useful reminder that PGA is essentially dimension-agnostic.

1.3.2 Lines as the Join of Points: (d− 1)-vectors

Points are the intersection of d hyperplanes, and are therefore d-vectors in the (d + 1)-
dimensional PGA of our d-dimensional space. The line connecting two points is represented
by their join, which is a (d− 1)-vector (see [13]). Therefore we should use (d− 1)-vectors to
represent lines when those are viewed as being swept out by points. In 3D PGA, these are
of course bivectors (just like the meet lines were bivectors), and they are sometimes called
‘dual lines’ if the meet lines of type eq.(1.2) are seen as ‘direct lines’. But others use the
terms conversely. In this text we will use the term ‘(join) line’ for the line representation as
a (d− 1)-vector, producible by joining two points in d-dimensional space.

A natural form of the join line Lo through the origin O, in a direction denoted by the
Euclidean vector u is then:

join line: Lo = O ∨ (O + uI) = O ∨ (uI) = · · · = u ·O, (1.3)

with O = Id the Euclidean pseudoscalar, which represents the point at the origin. The details
of the computation may be found in eq.(C.7), using techniques from [13].3 Such a join line

is normalized when its direction vector u is a unit vector; then LL̃ = u2 = 1 (so L2 = −1).
Physically moving the origin join line Lo = u · O, to pass instead through a point Q at

location q gives the join line as a (d− 1)-blade of the form

L = (1− εq/2) (u ·O) (1 + εq/2)

= uO − εquO/2 + uOεq/2

=
(
u + (u ∧ q)ε

)
O

= u ·O + (u ∧ q) I
= u · (O + q I) (1.4)

= u ·Q. (1.5)

3For readers of [13] lower than version 2.0, we have now decided to redefine the join with a swapped order
relative to that source, namely as A ∨B = (BIr ∧AIr) I = ?−1(?A ∧ ?B), to correspond better to existing
homogeneous coordinate software. This also returns the Common Factor Axiom to the order it has in [3]:
(A ∧B) ∨ (B ∧ C) = (A ∧B ∧ C) ∨B.
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The various alternative ways of writing, as geometric product, sum of terms, or dot prod-
uct are each handy in different contexts. The expression u · Q is an especially direct and
memorable way to represent this (join) line through Q in direction u (in d-dimensional PGA
Rd,0,1, the expression is u ·Q(−1)d−1). Note that while for the point at the origin u ·O = uO
(so that the dot product can be replaced by a geometric product), the same does not hold
for other points like Q. Therefore it is a good habit to always write a (join) line in the dot
product form, even at O.

The element u ·Q is an (d− 1)-blade, and can thus be considered as the meet of (d− 1)
independent hyperplanes, so the condition for a hyperplane p to belong to the ‘pencil of
planes’ u · Q is: p ∧ (u · Q) = 0. To see that this contains the two conditions p ∧ Q = 0
(point Q lies on p) and p · u = 0 (u is a p-plane direction), simply expand it to p∧ (u ·Q) =
(u · p)Q− u · (p ∧Q) = 0, and observe that the two terms are linearly independent.

1.3.3 Hyperline Units

It is natural to interpret the weight of the intersection L of two hyperplanes mathematically
as an ‘intersection strength’, ranging from 1 for orthogonal intersection of two normalized
hyperplanes n1 and n2, to 0 for parallel hyperplanes, to −1 for orthogonal intersection ‘in the
opposite order’. In 3D, meet lines of the form eq.(1.2) thus derive a measure of the numerical
stability relative to noise in the planes: a meet line with weight close to 0 is ill determined
in its parameters of location and direction. If the planes were weighted, the resulting line
weight is proportional to the product of the plane weights. In 2D, the meet of two lines
(2D hyperplanes) produces a ‘weighted point’. Here too the weight is not physical mass, but
rather a numerical measure of the signed orthogonality of intersection (it is the sine of the
angle between normalized lines).

But if we view the 3D meet line as denoting a motion bivector (rotational or translational),
we may want to interpret its weight as a measure of the velocity (angular or linear). For a

normalized line with LL̃ = 1, we can write the corresponding rotation motor around that
line in the form

exp(−Lωt/2),

and then ωt is the amount of rotation in [radians], and ω is the angular velocity in [radi-
ans]/[time]. So the angular velocity line would be naturally represented as the weighted line
Lω, with units [radians]/[time].

It thus appears we should separate geometry and kinematics: even if we have two 3D
planes that determine a rotation line, we should intersect the planes, normalize the meet line
to make it dimensionless, and then determine a rotation rate for it before we construct the
motor. (And similarly in 2D, where two lines intersect in a weighted point, the center of
rotation.)4

4Interestingly, sometimes we can encode the geometry to provide the kinematics quite naturally, as in
the tricycle example of [13]. There the intersection strength parameterized the speed of the motion in a
geometrically sensible manner: it naturally trades off translational and rotational aspects, and a velocity rate
results that generates a cardioid as fixed-time endpoints, see Figure 1.2.
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φ

center

orbit

r = e1
f(φ)

O

Figure 1.2: From [13]: Geometry and orbits of a tricycle. When moved one time-unit under

the motor Mφ = exp(r∧ f(φ)/2), the endpoints MφOM̃φ, for various steering angles φ, form
a cardioid.

1.3.4 (Join) Line Units

Lines (as opposed to hyperlines) are made from the connection of points, and their canonical
form u ·Q indicates clearly that they have as their unit the measure of separation given by
u. If u is merely a distance, the join line has the measure of [length]; if u is a velocity, then
the join line has the measure [length/time]. If the point Q is a physical mass point, the unit
would be that of momentum: [mass × length/time] – and we will see that indeed, join lines
model momentum.

In PGA, (join) lines behave somewhat like tangent vectors, they denote the classical
concept of ‘a velocity at a point’. However, at any point Q′ on the join line u · Q, this
quantity has the same value; so there is a translational invariance to join lines which we
usually do not assign to tangent vectors.

1.3.5 Adding and Splitting Lines or Hyperlines

The element u ·Q, split as u ·Q = u · (O+ q I) represents a join line in terms of its classical
geometric parameters of direction u and relative location q to the origin (or any other point
used for O). A join line is of grade (d− 1), and in any dimension dual to a 2-blade (i.e., the
outer product of two vectors).

But we will also need the sums of join lines. In general, that is not the dual of a 2-blade,
but the dual of a bivector (i.e., an element of grade 2 that cannot necessarily be written as
the outer product of two vectors). That distinction between 2-blade and 2-vector, and hence
between a (d− 1)-blade and a (d− 1)-vector, is relevant in a representational space of more
than 3 dimensions; so for 3D PGA and beyond.

Similarly, sums of meet lines occur naturally when we attempt to write a product of
motors as the exponential of a single bivector (see [13]), so in the characterization of general
Euclidean motions. They are usually 2-vectors, not simply 2-blades.

14
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Let us therefore consider the structure of bivectors and their duals a bit more closely.
There are three handy ways of partitioning a PGA bivector B or dual bivector B∗ in calcu-
lations:

Euclidean split bivector: B = B + εv (1.6)

Screw split bivector: B = ω L+ ν LI (1.7)

Point split at Q of dual bivector: B∗ = p ·Q+ R I, (1.8)

where Q is a point d-vector (of the form Q = O + qI), B and R are Euclidean bivectors, L
is a 2-blade (in 3D representing a meet line), while ω ≥ 0, and ν can have any sign. Let us
discuss their uses.

• Euclidean split B = B + εv.
Eq.(1.6) distinguishes the Euclidean 2-blade part B and the ‘ideal’ part εv involving a
Euclidean vector v. Since ε2 = 0, the split eq.(1.6) is useful in calculations where one
needs to eliminate terms containing ε, often leading to rapid cancellation.

However, beware: this split is not equivariant - the Euclidean part of a moved element
is not the moved Euclidean part. Therefore, this is not a truly geometrical split. We
will employ it mostly to show the correspondence of PGA expressions for dynamics
with their classical counterparts (which are surprisingly often origin-dependent), in
Appendices A and B. It is a practice to be avoided from now on...

• Screw split B = ω L+ ν LI.
The screw split is basically the PGA version of Chasles’ Theorem in 3D, and could be
called a Chasles split (see [13] where it is called the bivector split). In this form it is
valid only for 3D PGA, in general dimensions there are not just these two terms. This
split is useful when the bivector B is viewed as a screw generator, and then splits it as a
weighted sum of a normalized meet line 2-blade L (so that L2 = −1) and a directional
part LI (with (LI)2 = 0), generating a translation along the line L. In contrast to the
Euclidean split, the constituents L and LI commute.

The screw split is equivariant ([24] calls it the ‘invariant split’), and therefore has
objective geometrical meaning. It is convenient when the bivector B is used in an
exponential, since it permits a factorization of the resulting motor into V = exp(B) =
exp(ω L) exp(ν LI). This commuting factorization is used to compute the logarithm
of a motor in 2D or 3D [11], we’ll briefly treat it in Section 1.5. If B happens to be
a 2-blade, either ω or ν is zero. Appendix C.2 shows the detailed computation, more
background may be found in [13],[17],[24].

• Point split of dual bivector B∗ = p ·Q+ R I.
Join lines represented by dual bivectors represent the (momentary) path of a motion
(or its local momentum, or a force, as we will soon see). Often we have a special point
Q involved in the motion, e.g., the current moving point. It is then natural to consider
the decomposition of B∗ into a Euclidean join line p·Q through that point, and an ideal
remainder RI. An example is the description of the momentum of an object relative
to its center of mass.
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This point split is geometrical, its transform by a motor M is a similar split relative
to the transformed point Q′ ≡ MQM̃ , for B′∗ = MB∗M̃ = (MpM̃) · (MQM̃) +

(MRM̃)I = p′ ·Q′ + R′I.

In this text, we will use whichever split is most convenient for the local purpose at hand.
But we reiterate that in PGA, one should be able to work without splitting at all.

1.4 The Elements of 3D PGA

Clearly, 3D PGA interests us particularly, due to the universe we found ourselves in at birth.
Table 1.1, adapted from [13], gives a full overview of the elements of 3D PGA.5 It arranges
them in a convenient manner, highly suitable for implementation on SIMD/GPU hardware.
Quadruples represent data items that are naturally grouped in geometric computations, with
a basis chosen to have the sign swap behavior within each group be universal (see the detailed
description in [13]). The indicated arrangement minimizes data fetches.

In 3D PGA, both meet lines and join lines are represented on a bivector basis. In the
table, they are denoted simply as ‘lines’; similarly, the term ‘screws’ is used to stand for both
screws and co-screws (for those who know Screw Theory, see Section 2.8).

When we start computing kinematics and dynamics, some routine computations recur.
We have collected some of those nuggets and their derivations in Appendix C.1, so that we
can refer to them and focus more fully on the physics than on the algebra in the main text.
Skip them at first reading, and use them as needed; or view them as exercises to brush up
on your GA skills.

1.5 The Motor Logarithm

While not strictly necessary for this text, it is probably good to know some more details
about the relationship between motors and bivectors, especially in 3D PGA. This will aid
you in interpolating motions.

A bivector B is a natural parametrization of a motor M = exp(B) (note that we omit the
usual factor of −1

2
, to keep the correspondence a bit more straightforward in this section).

Conversely, given a motor, its bivector can be found by means of the GA logarithm:

M = eB ⇐= B = log(M).

There is the usual ambiguity of 2π in bivector angle for logarithms of rotational motors
(which is why we avoid the double implication, though in practice it holds well enough).

Multiplication of motors does not lead to the addition of their bivectors, and so the
logarithm of a product is not simply the sum of the logarithms of the factors. This only
holds if the factors were commuting; there is some extra work required if they were not (see
[24] for the details in n-dimensional GA, of arbitrary signature).

In 3D PGA there are efficient algorithms for computing exp and log, indicated in Fig-
ure 1.3. The log results in a bivector in the form of its Chasles split (see Section 1.3.5).

5If you like to have this picture around, we have its mug shot as one of our Geometric Products at
bivector.net/merch.html.
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grade 1 grade 0 grade 2 grade 4 grade 3

vector

e0, e1, e2, e3

scalar

1

E-bivector

e23, e31, e12

ε-bivector

e01, e02, e03

pseudo

e0123

trivector

e123, e032, e013, e021

plane

(normal equation)

line

(Plücker coordinates)
point

(homogeneous

coordinates)
screw

(Lie algebra)

plane reflector

rotator

(unit quaternion)

translator

point reflector
motor

(unit dual quaternion, Lie group)

1 reflection 0/2/4 reflections 3 reflections

Table 1.1: The components of the elements of 3D PGA can be stored as different kinds of
blades, often in quadruples. If done in the smart SDK arrangement, this can use SIMD/GPU
hardware for graphics efficiently. E denotes Euclidean elements; ε denotes elements on the
vanishing plane. (Actually, the translator is placed here for symmetry, its scalar is always
1 so does not need to be stored, and we set its pseudoscalar to zero; this artificial symmetry
improves efficiency.) In gray, we have indicated classical concepts now structurally embedded
in PGA. Minor caveats: not all linear combinations of the bivectors are lines, only those
that are factorizable by the outer product. Similarly, the point reflector is indeed 3 planar
reflections; but in general, 3 planar reflections generate a more general transformation. From
[13].
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Figure 1.3: Efficient algorithms for log and exp in 3D PGA, by Steven De Keninck from [6].
Verifying their correctness is a useful exercise in PGA techniques. The bivector basis used is
(e01, e02, e03, e12, e31, e23).
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Chapter 2

Geometrical Physics

2.1 The Kinematics of Euclidean Motion

Motions are represented by motors, i.e., exponentials of bivectors (see [13]). In the usual
convention, a bivector Bt would lead to the motor exp(−Bt/2) (the inclusion of the factor
−1

2
guarantees that orientation angles and translation measures retain their usual classical

values and orientations). When we study kinematics and dynamics, we are interested in
changes of motion. There are some subtleties, which we make explicit in this Section.

2.1.1 Resolving a Differentiation Paradox

We start with a paradox:

When differentiating a motor M(t) = exp(−Bt/2) (with a constant bivector B),

we obtain d
dt
M ≡ −1

2
B exp(−Bt/2) = −1

2
BM , so that B = −2ṀM̃ . On

the other hand, since B and exp(−Bt/2) = M commute, we could also write

Ṁ = −1
2
M B, and find B = −2M̃Ṁ . The two answers are in general not the

same, so which is the true rate of change bivector B of the motor M(t)?

Actually, we should have phrased the question more subtly. When we have a time-varying
motor, it should be considered in its context: it was a motor applied to a certain motion
state M0. That motor M0 brought an element X, originally in a standard specification state
X0, to its current position and attitude, resulting in the initial element M0X0M̃0 at time
0. From that state, it is moved by exp(−Bt/2). So we should have stated that the actual
time-dependency of the motor M is M(t) = exp(−Bt/2)M0. Differentiating we now find
(not assuming anything about commutation relations of M0 and B):

Ṁ = −1
2
BM, so B = −2 Ṁ M̃. (2.1)

This is the bivector rate of the motor in the world frame: it describes the time derivative for
elements already moved to an initial state by the ‘offset’ motor M0.

We can also consider the derivative for a time-dependent motor exp(−Bt/2) which was
applied first, moving the object in the body frame, after which a steady motor M ′

0 was
applied. At t = 0, this should be the same state as above, so the two M0’s coincide, i.e.,
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M ′
0 = M0, but the B’s are different. Then adding primes to distinguish this alternative

situation, we have M(t) = M0 exp(−B′t/2), and we find

Ṁ = −1
2
M B′, so B′ = −2 M̃ Ṁ. (2.2)

This is the bivector rate of the motor in the body frame.
The paradox is now resolved: we would characterize the circumstance in which body and

world frame initially coincide at t = 0 by setting M0 = 1; and precisely then and only then
are eq.(2.1) and eq.(2.2) interchangeable.

In a typical situation we could choose to describe a motion in either way, so that the time
dependent motor M(t) can be expressed as M(t) = exp(−Bt/2)M0 = M0 exp(−B′t/2). It
follows that the bivector rates of the two representations are closely related: world frame B
is the moved version of body frame B′:

B = M B′ M̃.

Both B′ and B have their uses to describe the rate of change of the motor M at time t: though
the world frame description may appear more natural, actually the motion relative to the
body frame will be found in Section 2.2.9 to simplify setting up the differential equations of
the motion, and computing their solution.

2.1.2 The Bivector Velocity (or Rate) B

Let us generalize slightly, for in the above M = exp(−Bt/2) had a constant rotational
velocity B. In general this is not the case; yet the conclusions of eq.(2.1) and eq.(2.2) are still
essentially valid; and in that constant-B form rather easy to remember or rederive (which is
why we showed them first).

But more generally, take a world frame motor M(t) = exp(−S(t)/2)M0 with S(t) a time-
dependent bivector. Then the time derivative will involve d

dt
S(t), and we will denote this

‘bivector velocity’ or ‘bivector rate’ by B. We can now show that

B = −2Ṁ M̃, (2.3)

so in form equivalent to the case of constant B above. Note that the measure of B is 1/[time],
since motors are dimensionless. Here is how we derive eq.(2.3):

1. Since M is a motor, it satisfies MM̃ = 1. Differentiating, we find ṀM̃ +M
˙̃
M = 0, so

ṀM̃ = −M ˙̃
M, so

˙̃
M = −M̃ṀM̃. (2.4)

2. With this result, we can write

Ẋ(t) ≡ d
dt
X(t)

= d
dt

(MX0M̃)

= ( d
dt
M)X0M̃ +MX0( d

dt
M̃)

= ṀX0M̃ −MX0(M̃ṀM̃)

= (ṀM̃) (MX0M̃)− (MX0M̃) (ṀM̃)

=
(
− 1

2
B
)
X(t)−X(t)

(
− 1

2
B
)

= X(t)×B,
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using eq.(2.3). This employs the geometric algebra commutator product × defined by

P ×Q ≡ 1
2
(P Q−QP ). (2.5)

3. The derivative of X must have the same grade as X. Only for bivectors is the grade
preserved in a commutator product (see e.g. [10]), therefore B must be a bivector.

In a 4-dimensional geometric algebra (like 3D PGA is), we can show this grade preserva-

tion directly, by a memorable argument. Rewrite B = −2ṀM̃ = 2M
˙̃
M = 2(ṀM̃)

∼
=

−B̃. As an element of even grade that is minus its own reverse in a 4D algebra, B must
be a bivector. (From 6D onwards, this simple reasoning no longer holds; but B is still
always a bivector.)

Depending on the nature of the motor M , its associated bivector B can be a linear velocity,
angular velocity, or a combination of those. We will therefore denote B, neutrally, as the
rate of the motion (in Screw Theory, this type of screw may be called a twist).

2.1.3 World Frame and Object Frame Derivatives

Let us summarize our results, in a notation which denotes the frames as subscripts: w for
world, b for body.

In the world frame for a rate bivector Bw we have:

Ṁ = −1
2
BwM. (2.6)

In the body frame, with rate bivector Bb = M̃ BwM , this derivative transforms to

Ṁ = −1
2
M Bb. (2.7)

We will use whatever is more convenient to express our results. The two rates are related by:

Bw = M Bb M̃.

The derivative of a constant element X0 that was moved by a motor M to become Xw =
M X0 M̃ is

Ẋw = Xw ×Bw. (2.8)

If the element X is itself moving, such as a time-dependent Xb that moves to Xw = MXbM̃ ,
then the derivative is more involved. The rate Ẋw of the motion is not simply the moved
rate Ẋb by the naive pattern matching Ẋw = MẊbM̃ (in a mistaken analogy to the correct

identity Xw = MXbM̃). Rather, we compute

Ẋw = d
dt

(MXbM̃)

= (MXbM̃)×Bw +MẊbM̃

= Xw ×Bw + (Ẋb)w. (2.9)

Partly because of these extra terms, we will find the use of the world frame less convenient
than the body frame when we develop dynamics.
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2.1.4 Moving a PGA Point

We are particularly interested in moving a point, represented as a trivector X of the form
X = O + xI. Its velocity should of course be the direction trivector (or vanishing point)

Ẋ = d
dt

(O + xI) = ẋ I = X ×Bw. (2.10)

This is straightforward and compact in PGA, and usable in this form. If you would do
a Euclidean split on the rate bivector Bw = Bw + εvw to track linear and angular effects
(as one usually does in the classical treatment) it leads to the more detailed expression
ẋ = vw + x · Bw for the velocity. We have placed all such correspondences to the classical
formulae in Appendix A, this one in Section A.2. We do not need them to perform our
computations, but they may reassure the reader that nothing is lost in the PGA treatment
relative to the classic approach.

2.1.5 Transferring Rates: Preserve your Ideals

The transfer of rates between world frame and body frame is more subtle than you might
suspect. For instance, take a point mass that is translating uniformly, i.e., it is moving
with the motor M = exp (−εvwt/2)M0, with vw constant. The rate of this motion is Bw =

−2ṀM̃ = (−2)(−εvw/2)MM̃ = εvw, as expected.
You might think that in the body frame, the object is at rest and therefore has no

translational rate. Yet computing, we find Bb = −2M̃Ṁ = M̃(εvw)M ≡ εvb. Thus the linear

motion rate in the world frame is also felt in the body frame, with vb = MvwM̃ = R̃vwR,
the counter-rotated world velocity (for you can easily verify that the translational part T of
M = TR has no effect on the translation-invariant translation specification).

Of course Bb could not have been zero, since then the solution to Ṁ = −1
2
MBb would

have been only a constant motor M = M0, contradicting our actual world motion. The
conceptual refinement we apparently have to make is that ideal elements like εv are also part
of the body frame. A frame for Euclidean motion description in 3D should be 6D, to specify
all rotation and translation parameters. The former reside at the chosen location, the latter
at infinity; but you need them both.

The classical picture of a ‘velocity attaching at the centroid’ (which would be zero within
the body frame) is just not sufficiently precise: the ideal elements are felt wherever you are
(though usually in a rotated manner if you changed your orientation). Though we may differ
in origin, we should share our ideals: the algebra tells us so.

2.2 Moving Masses

Classically, the locational and orientational aspects of a motion have to be treated separately.
By contrast, PGA can integrate them compactly, by encoding the local momentum as a join
line, and the total momentum as a screw – both of which are dual bivectors. Only when
we perform the (nonequivariant) Euclidean split does the separation between translation
and rotation re-appear: it is an artefact of a description of Nature, not of Nature itself.
So we avoid the split here; if you need to see the correspondence to believe PGA, consult
Appendix A; we provide pointers throughout.
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2.2.1 The Momentum of a Mass Point is a Line

Momentum is a measure for the ‘impetus’ of a motion, defined as ‘mass times speed’. Classi-
cally, momentum is separated into a linear momentum (mass times velocity) and an angular
momentum (mass times cross product of rotation axis vector and location). Both are classi-
cally vectors; so adding them would confuse the two contributions. In PGA, we just have one
dual bivector momentum (a join line), and the linear and angular momentum simply appear
as (retrievable) components of it in a point split.

We form the momentum of a point X with mass m as the join line determined by its
location and its change. So we join X to the displaced point X + Ẋ after one time unit
passed; the result is the same as joining X to Ẋ, since X ∨X = 0.

This join defines the momentum blade P for a physical point with mass m at location X,
moving with velocity Ẋ = ẋ I. (The P -based notation for momentum follows the tradition
in classical physics, probably traceable to ‘imPetus’.)

momentum of point mass P ≡ mX ∨ Ẋ = mX ∨ (ẋ I) = m ẋ ·X.

(For the rewrite to the compact final form ẋ · X, see eq.(C.7).) The measure of the PGA
momentum is still the same as usual: it is [mass × length/time], since the point X is a
dimensionless quantity.

From the final form you can see that the momentum is an element with 1 dimension less
than the d-blade of a point, so it is a (d−1)-blade in the PGA of d-dimensional space. In 3D
PGA, the momentum is therefore a (dual) 2-vector: it represents the join line along which
the motion takes place. In 2D PGA, the momentum is a 1-vector; that is indeed also the join
line of motion, because in 2D space (where hyperplanes are lines), PGA 1-vectors represent
lines.

P = mv ·X is the momentum join line that passes through the point X. We can consider
that same physical quantity also from a point Y , at a relative position r = y− x relative to
X. When we perform that point split to Y , we find:

P = mv ·X
= mv · Y +mv · (X − Y )

= mv · Y +mv · (rI)

= mv · Y − (r ∧mv) I.

We thus find that when seen from Y , the momentum P at X automatically acquires an
appropriate angular momentum (in 3D, it can be rewritten to the familiar vector expression
−(r ∧mv) I3 = ε (r×mv), with × the 3D cross product).

If you happen to take Y along the join line, then r ∧ v = 0, so the second term vanishes
and P = mv · X = mv · Y . Therefore these join lines are not quite to be imagined like
tangent vectors, they are not ‘a velocity at a point’: the PGA momentum P is the same for
any other chosen point on the join line. There is a ‘gauge freedom’ of sliding along the line
without affecting the value, which localized tangent vectors lack.

Note that the classical non-localized momentum vector p ≡ m ẋ can be used to rewrite
the PGA momentum to P = p ·X: the classical momentum vector attached to the trivector
point X (in 3D) to produce a join line. But we will not really want to revert to using the
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classical entity p by itself; it just is not sufficiently descriptive, since it does not indicate
where in space the momentum occurs. That defect of p is the fundamental cause behind
many classical rules for transferring inertial properties (like Steiner’s theorem). None of those
are needed with the PGA momentum P , which contains the spatial location X to provide a
sufficiently localized characterization of the physical momentum.

2.2.2 Total Momentum of a Mass Point Set

Now consider a rigid body consisting of a set of discrete mass points miXi. Its total momen-
tum is naturally defined as the sum of the contributing momentum blades:

P ≡ Σi Pi. (2.11)

However in 3D PGA, with its 4-dimensional representation space, this sum of 2-blades Pi
is generally no longer a 2-blade: it is a general bivector, not factorizable by the ∧-product.
(And in more than 3 dimensions, the same thing happens, P is a (d− 1)-vector in a (d+ 1)-
dimensional space, and no longer guaranteed to be a (d − 1)-blade.) Therefore the total
momentum is no longer a join line (we might call it a join screw). By contrast, in 2D the
total momentum remains line-like: 1-vector momenta add to produce the 1-vector of a 2D
line.

2.2.3 The Inertia Map

We develop a more compact form of the total momentum for a point set subjected to a motor
M(t) = exp(−Bw(t)/2), using Ẋi = Xi ×Bw of eq.(2.8).

P = Σi Pi

= ΣimiXi ∨ Ẋi

= ΣimiXi ∨ (Xi ×Bw)

≡ Iw[Bw]. (2.12)

Here we recognized that the momentum depends linearly on the world frame rate bivector
Bw, and we defined the total inertia operator Iw[ ] as that linear function,

total inertia: Iw[Bw] ≡ ΣimiXi ∨ (Xi ×Bw). (2.13)

This function Iw[ ] converts the rate bivector Bw into the momentum (d − 1)-vector P , and
is thus algebraically a kind of dualization in the (d+ 1)-dimensional PGA space. In 3D, this
is not so noticeable, since then it converts a meet line bivector to a join line bivector. In 2D,
the rate 2-vector Bw becomes a 1-vector momentum, clearly of a different grade.

The inertia Iw[ ] summarizes the essence of the mass distribution in the point cloud, for
the purpose of dynamics. Different point clouds with the same inertia operator are equiv-
alent from a dynamics point of view. For interactions like collisions between objects, more
detailed aspects of the object shape are of course still relevant. When the mass distribution
is continuous (a mass density), the sum is replaced by an integral.
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2.2.4 Total Inertia Computed in the Body Frame

Since it is convenient to specify the properties of a body in its own frame (in physics, typically
centered on the centroid and aligned with the principal axes of inertia), let us rewrite the
total inertia Iw[ ] in those terms. So rather than computing the total world frame inertia

Iw[Bw] as a function of Bw, we consider M̃ Iw[Bw]M as a function of Bb = M̃BwM . Let us
denote that total body inertia by Ib[ ].

total body inertia: Ib[Bb] ≡ M̃ Iw[MBbM̃ ]M. (2.14)

We can then map to the classical entities by performing a point split on Bb and on Ib[Bb],
relative to the centroid of the object. We emphasize that this splitting is not necessary for
using the inertia computationally: the total momentum P can be computed straight from
eq.(2.12), in world or body frame. But we will want to relate the PGA inertia expression
to those of classical physics, if only to use the tables with inertial moments for commonly
occuring shapes; there the inertia is customarily defined relative to the centroid. So let us
bring the PGA momentum P in that point split form expression (without changing its value),
by the following steps.

• Fixed body reference point
We introduce a point fixed in the body to document the body’s motion, and call it our
origin O. When we track the motion of this point under motor M , it moves to MOM̃ .

• Relative locations ri
In a chosen body reference frame at O, the points of the body at world frame locations
xi have locations relative to O, at relative vectors ri. So when expressed in the body
frame, we have that

Xi ≡M Ri M̃ = M (O + riI) M̃.

• Center of Mass
Let us now pick our frame such that its origin is the center of mass of the body. In
that centroidal body frame, the relative vectors, weighted by mass, should add to zero:

body frame at center of mass: Σimrri = 0.

We can quickly check that the centroid C viewed as world frame point at location
c = Σimixi/Σimi (using position vectors xi of the point Xi from the world frame
origin) is indeed equal to the transformed origin O of the centroidal body frame:

C ≡ O + c I = O +
Σmixi
Σimi

I =
ΣmiXi

Σimi

= Σimi

(
M (O + riI) M̃

)
/Σimi = M OM̃.

(2.15)

• Classical inertia
We expect the classical inertia in the body frame to make an appearance in our treat-
ment. In the GA treatment of classical mechanics, this inertia map is a bivector-valued
linear function on bivectors [20, 9], defined as:

classical GA inertia: IC [A] ≡ Σimi ri ∧ (ri ·A), (2.16)
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where A is a Euclidean 2-blade in the body frame (typically indicating the rotational
axis and its velocity). Details on its geometric interpretation may be found in Sec-
tion A.4, and Exercise 3 relates this bivector function IC [ ] to the even more classical
(we might even say ‘antique’) vector-based version of the inertia.

• In order to employ the classical inertia formula, the rate bivector Bb in the centroidal
frame should be split relative to the centroid:

Bb ≡ Bb + εvb. (2.17)

Note that in the centroidal frame, the point split coincides with a Euclidean split.

When we now execute this point split to the centroid (in detail through eq.(A.4) in Sec-
tion A.3), we find that the PGA inertia Ib[] indeed contains a GA version of the classical
inertia IC []:

Ib[Bb] ≡ Ib[Bb + εvb] = mvb ·O − IC [Bb] I. (2.18)

Thus Ib[Bb] contains components relating to the classical mass m in the linear momentum
mvb, and includes the classical bivector inertia IC [Bb] as its non-Euclidean part in an angular
momentum term. (For the world frame inertia map, this is discussed in more detail in
Section A.8.)

The correspondence eq.(2.18) implies that we can use familiar techniques to compute the
classical body inertia map IC [] and in turn compute the PGA body inertia map Ib[]. Those
techniques might involve looking up the principal inertial moments of common shapes in a
table, or using an SVD or diagonalization algorithm on the point data relative to the centroid,
to determine the principal frame and its eigenvalues. Embedding such classical inertias into
the PGA inertia gives you great advantages. notably linearity over object composition (which
classical inertia does not obey, as we will emphasize in Section 2.2.7).

2.2.5 PGA Body Inertia in the Eigenbasis

In practice, we can specify the PGA total body frame inertia map Ib[ ] by stating what it does

on the inertial body frame {Ei}
(d
2)
i=1 extended with its PGA dual {IEi}di=1. When you have a

discrete point distribution, this map can be established directly from its definition eq.(2.13).
For a more continuous distribution of mass, one can appeal to the classical way of com-

puting or tabulating inertias, on an eigenbasis. Let us specify the steps in 3D space, with its
6-dimensional basis for the PGA bivectors: the Euclidean basis 2-blades {e23, e31, e12} ex-
tended with the ideal basis 2-blades {e01, e02, e03}. The detailed description of the eigenbasis
may be found in Section A.6.

1. Given a point cloud, we compute the classical eigenanalysis of its inertia matrix a 7→
IC [aI3]/I3 (where we use the Euclidean pseudoscalar I3 to convert the arguments to
vectors, to allow the convenient use of vector-based common eigenvector software).
The eigenvectors ek correspond directly to the eigenbivectors (eigenlines) eij ≡ ekI3,
with eigenvalues iij.
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2. We then also determine the dual basis e0k of ideal lines (simply by multiplying eij by
I). This the ‘linear momentum’ part of the total inertia, and the eigenvalues of the e0k

are all equal to the total mass m ≡ Σimi.

3. We only have to do steps 1 and 2 once, off-line, for a given rigid point cloud. At
run time, given the body frame bivector Bb for which we want to compute Ib[Bb], we
decompose Bb onto the bivector eigenbasis

Bb =
∑
ij

[Bb]ij eij +
∑
k

[Bb]0k e0k (2.19)

(where the square bracket indicates ‘taking the coefficient’ of the component indicated
in its subscript). Then to obtain Ib[Bb], multiply those coefficients by the corresponding
eigenvalues, but ‘swapping’ the coefficients of the eigenvectors:

Ib[Bb] =
∑
ij

m [Bb]0k eij +
∑
k

iij [Bb]ij e0k, (2.20)

where the index set ij cycles through (23, 31, 12) while k cycles through 1, 2, 3.

The computation of the PGA inertia is therefore not harder than that of the classical inertia;
the most time-consuming part is the determination of the eigenbasis, as it always is.

If we wish to compute the total inertia Iw[Bw] for a world frame bivector Bw (which is

Iw[Bw] = M Ib[Bb]M̃), we can either compute it by going to the corresponding body bivector

Bb = M̃BwM , picking up the eigenvectors, and transforming back the world frame; or we can
perform a decomposition of Bw by projecting onto the transformed eigenbasis of bivectors
{Meij,Me0kM̃ } and then multiply them by the corresponding (crossed) eigenvalues.

When we start doing dynamics, the inverse of the inertia map will also occur in our
computations. It is simple to specify in the principal frame, using the same decomposition
eq.(2.19) of its arguments, as

Ib
−1[Bb] =

∑
ij

1

iij
[Bb]0k eij +

∑
k

1

m
[Bb]ij e0k. (2.21)

The inertia of a single mass point is a bit of a degenerate case, since it leads to a non-invertible
PGA inertia. Exercise D.10 looks into that.

2.2.6 The Inertia Map Dualizes Bivectors

We can make our notation of d-dimensional inertia somewhat more compact by employing
the Hodge dual (see Section A.6 for the derivation).

Ib[

(d+1
2 )∑
i=1

[B]ij eij] =

(d+1
2 )∑
i=1

λij [B]ij ?eij, with λij =

{
iij for i, j 6= 0

m for i = 0, j 6= 0.
(2.22)

Here m and iij are the total mass and the inertial eigenvalues in the principal basis directions
eij. To verify your understanding of this more general case, try defining the inertia map Ib[]
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Figure 2.1: The inertial duality map I[] takes a bivector rate B used to describe the kinematics
of a motor, and uses the mass distribution of the object to map it to a dual bivector P ,
representing a momentum that dynamical forces can act on. It thus couples dynamics and
kinematics, i.e., forces and motions, via the lopsidedness of the mass distribution.

in 2D rather than 3D; this is Exercise D.9. We show how to implement 3D inertia compactly
in Section 2.5.8.

The form of the inertia map Ib[ ] eq.(2.22), swapping the Euclidean and ideal aspects of
its argument (with some weighting), is thus basically a weighted Hodge dual. Indeed, for a
unit mass object with the identity matrix as its classical inertia, the inertia map Ib[ ] is even
exactly equal to the Hodge dual. An example of such an object is a unit mass sphere with
properly chosen radius, see Exercise D.12 (no, it is not a radius of 1!). 1

As we will see, kinematics involves bivectors; dynamics involves dual bivectors. The
connection between these two aspects is through the inertial properties of the objects involved.
In 3D, where dual bivectors are representable on the same bivector basis, this structure is
not so apparent. But it is very helpful to keep it in mind even then, since it allows you to
keep track of where to include inertia in your equations.

2.2.7 PGA Inertia is Additive

From the definition of inertia eq.(2.12), we can easily see that the total inertia of the union
of two bodies is the sum of their inertias. Say we have two objects X and Y consisting of
points Xi and Yi, respectively, moving with the same rate Bw, then

Iw[Bw]X∪Y = ΣimiXi ∨ Ẋi + ΣimiYi ∨ Ẏi
= ΣimiXi ∨ (Xi ×Bw) + ΣimiYi ∨ (Yi ×Bw)

= Iw[Bw]X + Iw[Bw]Y .

There is nothing to prove, really; this is just the trivial (de)composition of a sum. You would
not want a fundamental property like inertia to act differently.2

1The Hodge dual is the closest equivalent we can get of the projective dualization that was the original
meaning for the ‘P’ in the name PGA. We point the interested reader to the balanced explanation in [17]
employing the two dual spaces in full-fledged PGA. Since we decided to limit the algebra to one of the dual
spaces, namely the vector space of planes, we will let ‘P’ stand for ‘plane-based’ (a term also used in [18]).

2PGA shares the property of ‘additivity of inertia’ with other 6D frameworks, such as Spatial Vector
Algebra [16].
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Yet for classical inertias, this simple additive property does not hold! Instead, the user
needs to remember to apply the parallel axis theorem requiring the inclusion, by hand, of an
additional term related to the displacement of the centroids of the two bodies X and Y . We
show how this arises in Section A.7.

Similarly, if you would like to evaluate an inertia along a different axis, you have to add
a relative term to the classical inertia map. By contrast, in PGA inertia, we simply change
the argument, not the mapping. We can do this, because we can use an axis as an argument
to the function; it is a legitimate element of the algebra.

Inertia in PGA is truly a geometrical entity, independent of arbitrary choices like an
origin. It contains the necessary geometry inside it, as its capability to be evaluated on
arbitrary axes shows; relative positions do not need to be supplied externally, their effects
are automatically included in the map itself.

2.2.8 Geometry of the Inertia Map

If you need a visualization of the inertia map, let us consider 2D PGA, where join lines add
simply (they remain join lines). In general, there is a (non-normalized) axis point denoted
by the bivector rate B, relative to which an object moves (rotates, or translates when the
axis point is ideal).

Consider an object X, made as a rigidly connected set of mass points miXi. Each of those
points is moved by the motion around the axis B in the direction of the join line Xi∨(Xi×B),
generating a momentum Pi when weighted by its mass mi. To find the total momentum,
those should all be added: in 2D they again produce a join line. This total momentum line
passes through the center of mass (or is purely ideal if the motion is a translation). For
different B, the momentum line P = I[B] is different, thus defining the linear map I[].

Since the inertia map is linear in its argument B, we are allowed to consider the axis
point B as being split into convenient terms and then add their contributions. In 2D PGA,
it is especially handy to see B as the centroid C plus an ideal point:

B = ωC + νuI2 = ωC + νεu/I2,

where C and u are normalized (so C2 = −1 and u2 = 1; remember that I2 ≡ εI2). An object
point Xi is decomposed as Xi = C + riI2 in these C-based coordinates. Now we can tally
the two contributions for these terms to the total inertia.

• The centroid term ωC in B contributes the sum of join line momenta for a pure rotation:
this is the angular momentum of the object, and it can be written as ωiε, i.e. as a purely
ideal vector term of P = I[B]. The value of the moment of inertia i of the object X is
i =
∑

imir
2
i , see Exercise D.1.

• The ideal term νuI2 = νε(u/I2) ≡ εv in B causes a translation of the centroid, and
hence gives the linear momentum contribution to I[B]. This is of the form p · C, in
which we recognize the linear momentum p = mv = mνu/I2, involving the total mass
m ≡ Σimi, see Exercise D.2. Note that v is perpendicular to u.

More algebraic details of this correspondence to the classically separate linear and angular
momenta may be found in Section A.8.
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Of course the inverse inertia map I−1[ ] is also linear, and the results above specify it as
well in 2D PGA, composing it from terms relative to the centroid C: I−1[u] = ε (u/I2)/m
and I−1[ε] = C/i. The inverse inertia maps motion lines (in 2D PGA represented as vectors)
to rates (bivectors in n-D PGA).

A momentum line at infinity is thus caused by a rotation axis at the centroid C. A finite
momentum line is caused by an ideal translation ‘axis’ perpendicular to it. As we will see,
forces directly affect the time derivatives of the momentum lines: so pushing at the centroid
(‘exerting a force’) causes a translation, and pushing at infinity (‘exerting a torque’) causes
a pure rotation around the centroid. A general force/torque causes a linear combination of
the two.

The same principles apply in higher dimensions: we can always consider a general rate
bivector as a sum of a rate at the centroid C plus an ideal term. The term at C gives a
rotational inertia (parametrized by the available dimensionality for rotations which is

(
d
2

)
in

d-D PGA, with corresponding inertial eigenvalues iij) and is represented by an ideal join line;
the remaining ideal term of the rate gives a translational inertia m, for a d-dimensional linear
momentum of the form p · C.

Note that the inertia map of an object seems tied to that object; especially the object’s
centroid plays a special role to bring it in a pleasant form. But this is merely affecting its
decomposition, not its essence or value. The inertia maps of different objects can be added
to provide the inertia of the total object – of which the new centroid is then automatically of
similar representational relevance. But you do not need to compute that new centroid; the
sum of inertias automatically and inherently incorporates it.

2.2.9 Derivative of the Inertia in the Body Frame

In Section 2.1 we saw that differential equations may look slightly different in body frame
and world frame. In a body frame (which we will typically center on the centroid C, but this

is not a requirement), the world frame momentum P = Pw is experienced as Pb = M̃ PwM .
As we have shown, the inertia and therefore the momentum are easy to specify directly from
the mass distribution of the points in its ‘eigenframe’ (which is a body frame rather than a
world frame).

In Section 2.4.1 on Newtonian dynamics, we will need the derivative of the world frame
momentum Pw = Iw[Bw], and it will again be handy to express the detailed computation in
the chosen body frame. We have the tools to do so now. For the representation of Bw in the
body frame as Bb, the masses mi, the origin O and the relative vectors ri in the body frame
inertia Ib[ ] are constant, and therefore differentiation of this linear operator affects only the
argument Bb.

d
dt
Ib[Bb] = Ib[Ḃb]. (2.23)

By contrast, in the world frame the motors need to be differentiated as well, and that produces
an extra commutator term by eq.(2.8).

d
dt
Iw[Bw] ≡ d

dt
(M Ib[Bb] M̃) = (M Ib[Bb] M̃)×Bw +M d

dt
Ib[Bb] M̃

= M
(
Ib[Bb]×Bb + Ib[Ḃb]

)
M̃. (2.24)
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The body frame inertia has a special form which allows a minor additional simplification,
requiring only the Euclidean part of Bb in the commutator product; see Exercise D.14. If you
are interested in the form of the derivative of the inertia in the world frame, see Exercise D.16.

2.3 Forces, Torques and Hyperlines

Forces act on physical point masses, and so they attach at the point location and act in a
Euclidean direction, with a certain magnitude. In PGA, the algebraic element corresponding
to a geometrical ‘join line’ is therefore well-suited to characterize a force. Such a PGA join
line is insensitive to translations along its direction, or rotations around it, but otherwise
localized.

2.3.1 A Single 3D Force is a 2-Blade

In the PGA of d-dimensional space, the direction vector of the force f is represented as a
vanishing point (or ideal point) represented by the d-blade f Id. Here Id is the pseudoscalar
Id ≡ εId, and Id the d-dimensional Euclidean pseudoscalar. The direction of the force is thus
a trivector in 3D.

We combine location and direction in our force line (or line force?). Using the specification
of a join line by location and direction (from eq.(1.5)) we find:

force line: F = Q ∨ (f Id) = f ·Q. (2.25)

The point Q is dimensionless, but f and hence F has dimension measure of [force] = [mass
× length/time2] (we would use the SI unit Newton, with N = kg m/s2).

When we consider the same force acting along the same geometrical join line, but would
like to represent it relative to another location R at relative position r − q to the point Q,
we can simply perform a point split:

F = f ·Q
= f ·

(
R + (q− r) I

)
= f ·R + f ·

(
(q− r) I

)
= f ·R +

(
f ∧ (q− r)

)
I

= f ·R−
(
(r− q) ∧ f

)
I

≡ f ·R−TR I (point split relative to R) (2.26)

We thus find that the force part involving f simply transfers to the point R, but that at R
we also feel a Euclidean torque 2-blade TR ≡ (r− q) ∧ f (in 3D, this is the GA counterpart
of the classical vector torque τR ≡ (q − r) × f , by eq.(C.12): TR I = −ε τR). The torque
2-blade TR is also known as the moment of the force (though strictly classically one uses
that term for the 1-vector τR that is its Euclidean dual).3 Note that the actual value of the
entity F has not changed: it is only our split of it, relative to another point, that made the
necessary torque appear there. You might view that split as a form of ‘evaluating’ F at R,

3We denoted T in bold font, since it is Euclidean, and in upper case since it is not a vector.
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as the ‘R-coordinates of F ’. As we saw for PGA inertia, for PGA forces there is no need
either for a ‘parallel axis theorem’ that you classically have to remember to apply when your
attention shifts to another point R. The forque F automatically has the properties required.

2.3.2 Use the Forque!

We saw how the torque term appears when a force line is considered from a point not on
it. Torques are therefore inherent in how forces are positioned in space, they are a natural
aspect of force. Classically, the two terms in the Euclidean split relative to some origin are
treated separately and therefore need distinct names. For PGA, they are merely aspects of
one fundamental concept. In Screw Theory, this concept is called a ‘wrench’, but this term
is not in general use – which presumably means that the concept itself is not alive. In an
attempt to mend that, we propose to denote this unified, fluid representation of force and
torque by the novel term ‘forque’, since that much more strongly suggests the unification of
the two familiar classical descriptors.

Although in eq.(2.26) we have made the torque term appear as the consequence of an
offset force, it is also possible to apply a pure torque directly (for instance, using an actual
physical wrench tool). Such a pure torque of the form F = −TI is also subsumed in our
term ‘forque’.

In PGA, you should work with a forque F directly, rather than decompose it in terms
of f and T (its classical force and torque constituents, as in eq.(2.26)). We will show the
benefits of doing so! Still, you may need convincing that the simplicity of PGA contains the
full physics; in Appendix A we therefore split the expressions in their force and torque parts,
and the linear and angular motions, to show the correspondence to the familiar classical
expressions. But the main text and the demos show that this is actually no longer required.

Historical note: you may have read about Classical Mechanics done by means
of geometric algebra before, and seen it done differently. In his seminal book
[20], David Hestenes merges the two contributions of force and torque after the
fact, forming f + T. He notes that since the two terms are vector and bivector,
this shorthand is permitted; the individual parts can still be recovered. But
the modern approach of PGA provides their integration immediately, and less
arbitrarily, by recognizing the essential role that is played by geometrical lines.
In 3D, it retains Hestenes’ torque T as a bivector, but distinguishes two terms of
the same grade by the presence of its algebra element I to form F = f ·O−T I.
Note the role of the trivector O (or any other point used in a point split) and
pseudoscalar I, to ensure that both terms are of the same grade, and to make the
total element F become geometrically equivariant. Yet f and T are still separately
retrievable, should you wish to, from the Euclidean and ideal parts. Hestenes
himself corrected this approach to the bivector combination when treating screw
theory within CGA,in [21].

Paradoxically, force and torque can be combined in PGA without mixing, in a manner that
allows them to fluidly morph into each other when the focus of attention changes.
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2.3.3 Total Forque (or Wrench)

Forques apply to objects since their constituent points may be sensitive to influences. For
instance, charged masses would feel an electromagnetic forque (where the electric part may
exert a force, and the magnetic part a torque). The effect that the forque has on the motion
of the rigid object composed of such mass points is simply that the derivative of the PGA
momentum (the velocity rates, both linear and angular) equals that total forque. The motion
can be computed from this statement, by integrating the resulting differential equations.

Let us assume that we have a rigid object consisting of mass points miQi, with a forque
Fi acting on the i-th mass point. Then we can add their result as the total forque F :

F = ΣiFi = Σi fi ·Qi

If you need to see how this indeed adds the classical forces and torques as you would expect,
consult the split in Section A.9.

The summation of the individual forques makes geometric (or physical) sense, but alge-
braically the total forque has changed character: whereas the individual forques Fi are dual
2-blades, the total forque is a dual 2-vector. The algebraic difference is that dual 2-blades can
be factorized, but dual 2-vectors cannot (in 3D PGA and beyond). The total forque therefore
no longer simply has an associated (join) line as the geometry of its action; the geometrical
interpretation of its bivector is a finite line L paired with an orthogonal ideal line LI (in
3D; in more dimensions there are more terms). We mentioned how to retrieve that geometry
equivariantly when we treated the screw split (or Chasles split) of bivectors in 1.3.5.

Physics Aside: It is customary in treating the motion of a set of points to split
the force fi on a particle i into internal forces fij and external forces f ′i , and (a)
to assume that the internal forces obey Newton’s third law: fij = −fji and (b)
that they are central (directed along the connection line of the points, so that
(xi − xj) ∧ fij = 0). The sum of all forces then equals the sum of the external
forces, and the sum of all torques equals the external torques T′i = qi ∧ f ′i :

Σifi = Σif
′
i and ΣiTi = ΣiT

′
i.

In this write-up on rigid bodies, we will not mention the internal forces anymore,
and use the primeless notation for forces or external forces. But when your bodies
are non-rigid, you will need to look deeper, with e.g. [20] or [1] as your guide.

We insert a remark on terminology for 3D. In the PGA of 3D space, the dual of a bivector
is a bivector, so we can speak of the forque bivector (our original title was ”May the Bivector
Be with You”). That is OK, but it is actually helpful to bear in mind that it has a dual nature
(dual to a rate bivector; from meet line to join line); that fact makes some formulas more easy
to remember. Forces are lines in any dimension, and lines are dual bivectors. This also works
unchanged in 2D (where forces are PGA vectors), and even in d-D. This uniformity greatly
simplifies implementations. As some later examples will show, we can always implement
a dynamics problem in the lowest dimension in which it can be defined, and then that
description will be automatically valid in any higher dimension, and the program based on it
will compute the correct solutions. Since a dimension-agnostic algebra thus allows for cleaner
code, we will seize the opportunity to set up the algebra this way.
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hyperplane
∧

−−−−→ meet line ←−− ? −−→ join line
∨

←−−−− point
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F

←−−−− input

Figure 2.2: Kinematics and dynamics are dual aspects of physical motion. They are coupled
via the mass distribution as represented in the inertial duality map.

2.4 PGA Dynamics: All in One

2.4.1 The Law of Motion

Newton’s second law of motion states that the total force equals the time derivative of total
momentum, and affects the motion in that manner. In the PGA formulation, this generalizes
to the total PGA forque F and total PGA momentum P as:

d
dt
P = F.

We now have all the ingredients to compute the motion of an object based on forces applied
to it. We characterize the motion by a motor M ; then the general outline is as sketched
in Figure 2.2, chasing the input (a forque F ) to the resulting motion M . Since we found it
convenient to specify the properties of the body in the body frame (to avoid extra terms in
the derivative according to eq.(2.24)), we can rewrite the equation of motion as

M
(
Ib[Bb]×Bb + Ib[Ḃb]

)
M̃ = Fw, (2.27)

where Fw is the total forque (or wrench) in the world frame. In the body frame, this forque

is felt as Fb ≡ M̃FwM . We therefore obtain two coupled equations for the motor M given
the total forque F : the body bivector Bb satisfies

dynamics equation: Ḃb = Ib
−1[Bb × Ib[Bb] + Fb], (2.28)

and the motion M is related to the body bivector by eq.(2.7):

kinematics equation: Ṁ = −1
2
M Bb. (2.29)
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Newton/Euler Ṗ = F

Inertia Ib[B] ≡ ΣimiXi ∨ (Xi ×B)

Dynamics Ḃb = Ib
−1[Bb × Ib[Bb] + Fb]

Kinematics Ṁ = −1
2 M Bb

Table 2.1: The equations of motion in PGA.

We emphasize that these two equations contain all forces and torques, and both the linear
and angular motion of the object. The dynamic object properties are encoded by the total
body inertia Ib[ ], of which we copy the specification eq.(2.20) for completeness:

Ib[

(d+1
2 )∑
i=1

[B]ij eij] =

(d+1
2 )∑
i=1

λij [B]ij ?eij, with λij =

{
iij for i, j 6= 0

m for i = 0, j 6= 0.
(2.30)

with the eij and iij the eigenbivectors and eigenvalues of the body inertia map (in bivector
form), and m the total mass of the body. That is all there is to dynamics in PGA.

The equations can be numerically integrated in an implementation, as we will see in the
next Section. Gunn notes in [17] Section 9.5,

When written out in full (for 3D), this gives a set of 14 first-order ODE’s. The
solution space is 12 dimensions; the extra dimensions correspond to the normal-
ization MM̃ = 1. At this point the solution continues as in the traditional ap-
proach, using standard ODE solvers. Our experience is that the cost of evaluating
eq.(2.28)-eq.(2.29) is no more expensive than traditional methods.

Actually, the PGA speed is identical to the dual quaternion method - because they are
algebraically isomorphic. Table 2.1 summarizes the body frame motion equations.

When an object has unit mass and equal unit principal inertias, the inertia map becomes
identical to the Hodge dual. Explore the simple form the equations of motion then take in
Exercise 13.

2.4.2 Geometric Intuition for the Motion Equation

We can now complete the geometrical insight of Section 2.2.8 to include the forques:

The total momentum of a rigid object can be viewed as composed of two terms.
A momentum line at infinity is caused by a rotation axis at the centroid C, and
a finite momentum line by an ideal translation ‘axis’ perpendicular to it. Forces
directly affect the time derivatives of the momentum lines: so pushing at the
centroid (‘exerting a force’) causes a translation, and pushing at infinity (‘exerting
a torque’) causes a pure rotation around the centroid. A general force/torque
causes a linear combination of the two.
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In any dimension, the velocity rate is a bivector, since it is the logarithm of a motor. The
momentum is dual to the velocity, and its derivative proportional to the force. Forces are
therefore always line-like; in all dimensions, these are represented as dual bivectors (so in 3D
PGA a bivector, and in 2D PGA a vector).

2.5 Implementation

This section consists of partial text of https://enki.ws/ganja.js/examples/pga_dyn.

html (in January 2022). We recommend actually opening that webpage since it contains
executable code, which is more convincing to see in action than to read about it. But we want
to give at least the flavor of what the implementation looks like here on paper.

Hopefuly we have been able to convince you that considering a problem in a dimension-
agnostic way is of great value, and in fact provides a unique guide to the geometry. With
the ability to formulate the mathematics in d-D comes the desire to have a true dimension
agnostic implementation. There are several practical hurdles to be taken and we’ll provide
a short overview that should allow you to build your own dimension agnostic rigid body
dynamics solver.

In the next section, we will go over the details of such an implementation, requiring noth-
ing but a geometric algebra library. In the section after that, we focus on the 3-dimensional
case and provide some details for an efficient implementation. We will use the ganja.js

(https://github.com/enkimute/ganja.js) library for our implementation. It offers a syn-
tax that is compatible with most other popular GA libraries when it comes to mathematical
expressions - so you should have no trouble replacing it with the library of your choice, chosen
from the list at https://bivector.net/lib.html.

2.5.1 Syntax

The examples in this text are all available as stash in the ganja.js coffeeshop at https://
enkimute.github.io/ganja.js/examples/coffeeshop.html. They require no installation
and you can easily Edit them, then Save and Run and share your own versions. Playing
around with the existing examples is a great starting point to get a feel and we strongly
encourage you to do so.

For those not accustomed to a geometric algebra library, Figure 2.3 gives a short overview
of operators that should come in handy. Other operators like addition work as one would
expect on arbitrary multivectors, and division is defined w.r.t. the geometric product. Note
that the &, |, ∧ binary operators keep their original bitwise functionality when both argu-
ments are integers – we’ll use that fact below.

2.5.2 Simulation setup

Rigid body simulators, or physics simulators in general are often complex pieces of code,
and properly handling collision detection, integration errors, and large numbers of objects
requires a lot of infrastructure that is not relevant to our current exploration. We refer the
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Figure 2.3: The notation of common GA operators in ganja.js.

reader to the vast body of literature available on the subject and instead focus our attention
on the geometric representations of forques, momenta, accelerations and velocities.

For anything not related to the representation we have tried to pick the simplest and most
common solution. For collision detection (Section 2.6.1) this means a simple SAT algorithm
is used, while for integration we pick the trivial forward Euler scheme. (Its problems are well
understood).

The simple Euler integration scheme predicts a future state St+h by taking small steps h
in the direction of the derivative Ṡt at time t:

St+h = St + h Ṡt.

The simplicity of this technique is its main advantage, but it is not particularly good at
energy conservation and misbehaves in the presence of stiff differential equations. Despite
these disadvantages it is still widely used and allows us again to focus on the representation
while keeping an integrator that is easy to implement in an environment that offers opera-
tor overloading. For each frame we take a number of fixed steps n of step size h into the future:

When we need more precision, we can invoke the RK4 method.
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2.5.3 The General d-dimensional Case

Before we can focus on dynamics in d dimensions, we need some tooling to create and visualize
d-D meshes. We go over the techniques used in our demos in enough detail for you to recreate
them in your favorite programming environment. Keep in mind that adding visualisations
for the various elements of PGA is a must-have to debug and understand any algorithms you
implement.

• The Hypercube
The ‘hyper’ adjective is used to generalize 3D nomenclature to an arbitrary number
of dimensions. A hyperplane is a plane in 3D, but a line in 2D and a volume in 4D.
Similarly, a hypercube is a cube in 3D, a square in 2D and a tesseract in 3D. It is
probably the easiest shape to generate in an arbitrary number of dimensions, so the
ideal candidate for our toy examples.

• Vertices
To visualize our cube we need, at a minimum, to render its vertices and edges. A
hypercube in d-D has 2d vertices vi (a square has 4, a cube 8, a tesseract 16, etc ..).
The individual coordinates can easily be deduced from the binary representation of the
index i of each vertex vi

We can simply treat the first bit as the ‘x’ coordinate, the second as the ‘y’ and so
on. With the number of dimensions expressed as ‘d’, the following piece of code will
generate all the points of a d-dimensional hypercube:

• Edges
Equiped with the points, we still have to generate a list of edges. The edges we are
interested in are the non-diagonal edges, and using the same encoding as above it is
easy to see that those are the edges that differ only in one bit. We can use the binary
AND & and XOR ∧ operators to easily detect if two indices i, j differ in just one bit:

• Visualizing
To visualize a cube in 3D, we typically use a perspective transformation. While
ganja.js will default to an orthogonal projection for spaces of more than 3 dimen-
sions, it is still quite easy to do a perspective transformation for your own visualisation
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purposes. To do so, consider a camera at point c, and a screen s, then the projections
of our hypercube points Ai are given by

A′i = (Ai ∨ c) ∧ s.

If the projection screen s aligns with the coordinate axes, the resulting points a′i will
have all but two coefficients zero, trivially enabling you to render them as 2D elements:

2.5.4 Motors in d dimensions

As we’ve learned in [13], isometries in any number of dimensions can all be called k-reflections.
The 2k- reflections thus represent the continuous (handedness preserving) transformations,
and they can easily be generated using the exponential map.

M = eαB̄.

While this function is well defined for arbitrary B = αB̄ in arbitrary algebras, for our
purposes we will only need to consider the exponential of a 2-blade B (so that B ∧ B = 0),
in this case the exponential map is particularly trivial

eαB̄ =


1 + αB̄ if B̄2 = 0

cosα + B̄ sinα if B̄2 = −1

coshα + B̄ sinhα if B̄2 = 1

This allows us to easily generate translations (with pure ideal bivectors e0i, 0 < i), and
rotations (with pure Euclidean bivectors eij, 0 < i 6= j). The current position of our object
will always be represented by a motor M , that transforms elements in the body frame Xb of
our object to its place in the world frame Xw

Xw = M Xb M̃

In the ganja.js code, such sandwiching is denoted by M >>> X; it is also correct for odd
versors V , when there is a sign (−1)(grade(V )grade(X) involved.
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2.5.5 Points

The origin itself is always the (d − 1)-vector dual to the projective hyperplane e0 (which
we labeled ε in the mathy text), and so we can specify it in a dimension independent fash-
ion as ?ε. Similarly a point at Euclidean position

[
x1, x2, x3, ...

]
can always be written as

?(ε+ xiei), a formulation which is independent of both the number of dimensions and the
particular choice of basis. In our code, the Hodge dual is denoted by an exclamation point,
so we obtain:

2.5.6 Kinematics

To verify our simulation setup, let us simulate the kinematics of a uniform inertia hypercube
(unit mass, unit inertia). A hypercube is a rotationally symmetric object, reducing our
inertial duality to the standard Hodge dual. The current kinematic state is stored as a
pair of multivectors [M,B], where M is the motor that represents our current position and
orientation and B is the bivector representing our current velocity, both specified in the body
frame.

In the absence of external forces, the derivatives of these state variables are, for a uniform
inertia:

Ṁ = −1
2
M B, Ḃ = ?−1(B × ?B),

where the × is the geometric algebra commutator product A × B = 1
2
(AB − BA). This

translates to a remarkably simple state update (for uniform inertia):

.

Putting everything together we can simulate the kinematics of our hypercube. Play
with this as https://enki.ws/ganja.js/examples/coffeeshop.html#irAoiHVhn in the
ganja.js coffeeshop; you should now recognize all the code. The motions are more involved
than you might think. You can try to find settings that mimic the exact solutions depicted
in Figure B.1.
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2.5.7 Dynamics: Forques

When we consider external forces (forques!), we move into the field of Dynamics. In our PGA
setup, forques are always along lines, and expressed in the body frame. Let us consider some
simple cases.

• Gravity
The easiest way to describe gravity in a dimension-independent fashion is to describe
the acceleration it causes to a body in the world frame. Such an acceleration is always
a bivector, and assuming gravity is acting along the negative Y direction, it simply is
−9.81e02. (Actually, it might be smarter to use the e01-direction, since gravity exists
from 1-D onwards; but our default visualization would plot this horizontally.)

All we need to do to find the associated force in the body frame is to first move this
ideal bivector to the bodyframe, and then dualize it to find the associated force line.

Fg = ?
(
M̃(−9.81e02)M

)
. (2.31)

The resulting force line will be purely Euclidean (see Section 2.4.2), a line through the
center of mass of our object.

• Spring
Hooke’s law for a spring can be formulated in a similarly easy way. It is a line from
a point on the body Pb to an attachment point Aw in the world frame, scaled with a
spring constant k:

FH = k
(
Pb ∨ (M̃AwM)

)
.

• Damping
The Euler integrator we are using is notoriously bad in energy preservation and tends
to blow up in the presence of external forces. To mitigate this, we simply dissipate
some of the energy at each step by creating a force inverse proportional to the current
velocity bivector.

Fd = ?(−αB).

This is not truly physics, but a commonly used trick in Euler integration, and the effect
does not look unnatural.

Putting all this together, we can attach our hypercube to a string with forces encoded as:

.
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The total code for a hypercube on a string, incorporating all that we treated so far, may
be found in Figure 2.4. But it is better to play with it in the ganja.js coffeeshop (fol-
low the link at /ganja.js/examples/pga_dyn.html#Damping), since you can then test your
understanding by modifying it (Save and Run). See the (hyper)cube bounce!

2.5.8 Optimized Computations in the 3D Case

The examples above are, as far as we are aware, the first truly dimension independent im-
plementations of rigid body dynamics. While this requirement is exactly what enabled this
concise description, and provided a clear view on the requirements imposed by the geometry
on the algebra (e.g. forces must be (d− 1)-vectors), it is not a requirement that carries a lot
of practical value. The special case of d = 3, and its representation of the Euclidean group
is the one Nature selected, so it pays to take a closer look at the formulas in this particular
case.

That’s exactly what we will do in this section, focusing first on the normalisation of
motors that, due to the nature of numerical integration, tend to drift away from the motor
manifold. Additionally we show how the concise formulas above work out at a coefficient
level to produce automatically exactly those scalar operations we used to handcraft in a not
too distant past. Finally we show how to setup the inertial map and convert existing known
inertia tensors to their bivector equivalent.

Basis

For the 3D case, we pick our basis so that it matches conventions from computer graphics,
making it easier to integrate PGA methods in existing codebases. The basis we use for
3DPGA is the following:

1, e1, e2, e3, e0, e01, e02, e03, e12, e31, e23, e032, e013, e021, e123, e0123.

Renormalizing a Motor

A motor in PGA needs to satisfy the normalization condition MM̃ = 1, working this out in
coefficients gives us the conditions on a coefficient level :

1 = MM̃ = m2
∅ +m2

12 +m2
31 +m2

23 + 2 (m∅m0123 −m01m23 −m02m31 −m03m12) e0123 = 0,

(where m∅ ≡ 〈M〉0 is the scalar coeffient of the rotor). We see that the normalization
condition in 3DPGA results in two conditions, for the coefficients of the scalar 1 and of the
pseudoscalar e0123.

A multivector that has only scalar and quadvector parts is called a Study number, in our
case isomorphic to the dual numbers with an inverse and square root that is well defined.
Invoking some of our results on Study numbers from [6], we obtain for the normalization of
a motor:

M ≡M/(MM̃) = s(M + d(m23e01 +m31e02 +m12e03 −m∅e0123)),
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Figure 2.4: Dynamics code for a hypercube on a string, in gravity. Adapt window.d...
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with s and d computed as:

s =
1√

m2
∅ +m2

12 +m2
31 +m2

23

, d = s2(m∅m0123 −m01m23 −m02m31 −m03m12),

all of which is straightforwardly transferred into code. Armed with this efficient orthogonal
projection through renormalization, we are guaranteed to stay on the motor manifold even
in the presence of numerical error.

Optimizing GA Expressions

To obtain optimal coefficient expressions from the concise and elegant mathematics above,
an algebraic optimization (which can be automated using e.g. GAL [23] Grassmann.wl [4] or
GAALOP [5]) is required. We illustrate the process for the derivative of the velocity bivector
for the symmetric top. The GA formula we want to optimize is

Ḃ = ?−1(B × ?B).

For a general bivector B with coefficients

B = b01e01 + b02e02 + b03e03 + b12e12 + b31e31 + b23e23

we employed our soon to be released symbolic computation package GAmphetamine [7] to
produce the expression:

Ḃ = (b02b12 − b03b31) e01 + (−b01 b12 − b03b23) e02 + (b01 b31 − b02b23) e03.

Thus the expression for Ḃ, involving two geometric products on a general bivector with
several dualizitions actually simplifies to just 6 multiplications and 3 subtractions of scalar
coefficients, for this case of uniform inertia.

As a second example let us consider the implementation of the forque of gravity. It
required us to move a single fixed force in the global e02 direction into the body frame, ac-
cording to Fg = −9.81 ?(M̃e02M) (which is eq.(2.31)). We calculated the optimal expression
using the same GAmphetamine technique as above. This effectively results in:

2(m∅m23 +m12m31) e12 + (1− 2(m2
12 +m2

23)) e31 + 2(m31 −m∅m12) e23,

so in this case are left with just 9 multiplications and 4 additions.
It seems that with the right tooling, we can both have our lunch (geometric, concise,

elegant, dimension-, metric- and basis-independent math), and eat it (optimal and efficient
coefficient level expressions in all spaces).

Converting Inertia Tensors

We have so far focused on inertially symmetric objects of unit mass, which simplified our
inertia tensor IC [ ] to the standard PGA Hodge duality map. Modifying our set-up to properly
incorporate full inertia is rather straightforward.

44



2.6. CONTACT FORQUES CHAPTER 2. GEOMETRICAL PHYSICS

To convert a standard 3D inertia tensor to our inertial duality operator, we start from
the diagonalized version of the inertia tensor. A list of 3D inertia tensors for a series of
common shapes can be found on https://en.wikipedia.org/wiki/List_of_moments_of_

inertia#List_of_3D_inertia_tensors.
Let us take the (rotational) inertia tensor of a solid cuboid of width w, height h, depth

d, and mass m as example:

IC = m
12

h2 + d2 0 0
0 w2 + d2 0
0 0 w2 + h2

 .
We represent this inertia in 3D PGA as a bivector also including the translational inertia m,
by eq.(2.20):

C = m
(h2 + d2

12
e03 +

w2 + d2

12
e02 +

w2 + h2

12
e01 + e12 + e31 + e23

)
,

after which our inertial duality can be implemented using per coefficient multiplication:

After this, simply make sure to use these maps A and Ai for the inertial duality in the func-
tion dState of Section 2.5.6. For these more detailed computations we need somewhat better
precision, so it makes sense to replace the simple Euler integrator by RK4:

and then to update the State by State = RK4(dState,State,h);.

2.6 Contact Forques

The previous examples were the mainstay of Classical Mechanics in a theoretical setting. In
practice, there is more than one object, and it contacts others in collisions. That is where
things get a bit ugly, since the physics of contact involves material forces which are less easily
modelled. The forces we have modeled so far in the implementation of Section 2.5 were being
integrated numerically, and so they are bound to the time steps of the integration. This
makes them not suited for modelling instant responses such as those required by Newton’s
third law. One option to resolve the issue is to model instantaneous collision response forces
known as impulses explicitly. This allows those to bypass the integrator and update the
velocity state directly. For the background of how collision is treated in this discrete time
system, consult the description of the Wiki page on Collision Response [25]. It motivates
why the ‘impulse method’ is a reasonable approximation. We basically take over from that
page when the equations start.
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Figure 2.5: A cube on a Hooke spring under gravity with contact.

Let us have two bodies in a frictionless point/plane contact at Q at the time of collision.
The local normal line at contact is N = n ·Q, with n the local normal direction of the contact
plane (the line N is given an orientation pointing ‘out of’ the plane contact object which is
indexed with ‘+’, and ‘into’ the point contact object which is indexed with ‘−’). A contact
forque is generated, with associated contact impulse in the direction of the line N (note that
this is actually a pure force, when we assume no friction). There is a proportionality factor j
to be determined from the contact requirement on velocity before and after: only the normal
component should change, it bounces back by a proportional ‘coefficient of restitution’ ρ.

The local velocities V± of the objects at the contact point are, before contact,4

V± = Q ∨Q×B±.

After contact, the impulse J affects the velocity through the inertia of each object by j I−1
± [N ],

so the velocities V ′± after contact are given by

V ′± = Q ∨Q× (B± ∓ j I−1
± [N ]).

In the frictionless case we are assuming, the relationship between the velocities before and
after is determined by how much the coefficient of restitution ρ affects the N -components of
the velocities:

(V ′+ − V ′−) · Ñ = −ρ (V+ − V−) · Ñ

(we put in a reversion on N to avoid dimension-dependent signs). We can combine all
equations to solve for the unknown j, to obtain:

j = −(1 + ρ)

(
Q ∨Q× (B+ −B−)

)
· Ñ(

Q ∨Q× (I−1
+ [N ]− I−1

− [N ]
)
· Ñ

(2.32)

With j thus found, replace the current B± of the state in which collision occurred with:

B± ← B± ± j I−1
± [N ] (2.33)

4Let us make × have precedence over ∨, it avoids many brackets; since Q ∨ Q = 0, it is not hard to
remember that it applies.
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and continue with whatever algorithm you used to solve the motion equations.
Since N = n · Q, one could write out eq.(2.32) for j in more detail and reduce both

numerator and denominator to Euclidean dot products. That corresponds closer to our
classical source [25]; see Section A.14 for details on this.

If the ‘minus’ object is infinitely heavy, its motion is not affected by the collision, so
V ′− = V−. Since it need not be static, its B− is generally nonzero. In such a case, the motions
are governed by the same equation eq.(2.32); you merely need to set I−1

− [N ] = 0, to reflect
the infinite inertia.

2.6.1 Implementation of Collision Response

Let us implement a simple situation of a convex object colliding with a plane. Then SAT
collision detection is sufficient. Adopted to be dimension agnostic, the Separating Axis
Test (SAT) algorithm tries to find a hyperplane that divides the space into two halves, each
containing only points of one of the objects being tested for collision. It requires both objects
to be convex, and considers each of the hyperplanes on the objects boundary as a potential
separating axis. In our example, we are only testing for collisions between a moving object
A and a fixed floor plane f . We can thus simply state that A is in collision with f if for any
of the points Ai of A we have

Ai ∨ f < 0.

Hence we can test if an object A that consists of a number of vertices Ai collides with our
floor by finding at least one point for which the above expression is true.

Using this, the code for updating the State is now changed using eq.(2.33):
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Play with https://enki.ws/ganja.js/examples/pga_dyn.html#Collision_Response in
the ganja.js coffeeshop, to see a cube bounce on a plane.

2.7 Kinetic Energy and Power

2.7.1 Duality of Rate and Momentum Bivectors

Dynamics is dual to kinematics. The bivector rates at which objects move can only be related
to the (join) lines of forces through the inertia map; and we have seen that the inertia map
is a form of dualization. It converts a bivector into a dual bivector, i.e., a (d− 1)-vector (in
the (d+ 1)-dimensional PGA, note that (d+ 1)− 2 = d− 1). In 3D, the dual nature of the
inertia map is a bit hidden, since then a (d− 1)-vector is also a bivector. Even then, you can
still sense its dual nature from the fact that in 3D the inertia map eq.(2.30) swaps Euclidean
and ideal parts (with some scaling by mass and inertia).

So momentum P is dual to velocity rates B. This is a bit surprising (in classical linear
motion, we view velocity v and momentum p = mv as very similar elements of our vector
algebra; as we have seen in PGA, the corresponding quantities εv and mv · Q are quite
different). Forques, which are proportional to the time derivatives of momenta, are of course
also dual to velocity rates: they are join lines (or join wrenches).5

The dual nature implies that there are combinations of rates and momenta, or rates and
forques, that produce scalars. This leads us naturally to kinetic energy and power.

5The same dual distinctions occur in other 6D frameworks: screws and coscrews (for rates) and wrenches
and co-wrenches (for forques) in Screw Theory; displacements and forces in Spatial Vector Algebra.
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2.7.2 Kinetic Energy T = 1
2B ∨ I[B]

The classical definition of kinetic energy of a mass point with velocity v is 1
2
mv2. In view

of the above, let us rather view this as (half) the dot product of the velocity v and the
momentum p = mv, and use that to define it in PGA.

There are several ways to produce a scalar from the rate Bb and the momentum P = Ib[Bb]:
we can take the join Bb ∨ Ib[Bb], or the outer product Bb ∧ Ib[Bb] (which gives a scalar factor
to the pseudoscalar quadvector I).

These two methods are essentially the same construction, since meet and join are dually
related. The outer product is perhaps more familiar, so we could define the PGA kinetic
energy T through:

kinetic energy T : TI ≡ 1
2
Bb ∧ Ib[Bb]. (2.34)

Section A.12 provides the connection to the classical formulation, and shows that both the
linear and angular parts are included.

Alternatively and equivalently, we could define using the join:

kinetic energy T : T ≡ 1
2
Bb ∨ Ib[Bb]. (2.35)

Being a scalar, the kinetic energy is invariant under the action of a motor, so either quantity
has the same value in the world frame. (Of course this ‘spatial-transformational invariance’
does not imply that it is constant in time!)

2.7.3 Power Π = B ∨ F
The work done on a point by a force involves the component of the force along the displace-
ment it caused. The power Π, work per unit time, is classically computed from velocity and
force as v · f .

In PGA, where velocity and force at a point X are represented as bivector B = ẋ ·X and
dual bivector F = f ·X we can compute this quantity directly from a meet or join expression.
We define the power Π by:

power Π of total forque F under motion by B: Π I = B ∧ F, (2.36)

where we dropped the frame subscript since the expression is invariant under M . Or, if you
prefer the join expression:

power Π of total forque F under motion by B: Π = B ∨ F. (2.37)

As for kinetic energy, we slightly prefer to compute with the meet (the familiar outer product)
rather than the join.

Our understanding of dynamics was much influenced by Gunn’s thesis [17]. His
purposeful non-metric and projective treatment makes it challenging reading, but
we should connect our notation to his, for those interested. On page 110 of his
thesis, Gunn defines the kinetic energy as −1

2
mΓ ∨Π, with Γ = V I (with V the

velocity). In his section 9.7, he defines total forque F as we do (and calls it ∆);
of course F = Π̇. Then the kinetic energy K has a derivative equal to the power
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K̇ = −B∨F (denoted in [17] as Ė = −Ω∨∆). The work done is then the integral
of power times time. Gunn views Ω ∨ ∆ as the (virtual) work – but this is per
time unit, so it is actually power. Gunn has recently replaced the join expression
by the somewhat more convenient dual expression B ∧∆ (also used by [19]).

To convince yourself that the PGA power Π as defined by eq.(2.36) or eq.(2.37) is identical to
the classical definition of the power of a linear and rotational motion, consult Section A.13.

2.7.4 Lagrangians

In this introductory tutorial, we have followed the Newton/Euler way of deriving the equa-
tions of motion directly from the geometry of the space in which the motion occurs. Lagrange
developed a different way of deriving those equations, based on a lagrangian energy function
L and its derivatives. This ‘phase space method’ is now often favored in expositions on Clas-
sical Mechanics, since it is better able to incorporate known symmetries, and as such also
more natural for quantum mechanics. The lagrangian method is in principle coordinate-free,
though often coordinates are used to express it. PGA should be very suitable to handle it
(and the related Hamiltonian approach). Let us briefly denote how this can look in the free
(forqueless) case.

We take the kinetic energy as the lagrangian in the forqueless case. We express it in the
body frame, but drop the subscript to unclutter the equations.

L = 1
2
B ∨ I[B].

This is a scalar quantity. In standard GA, many standard differentiation results exist for the
scalar product, but not for the join ∨. We bring the lagrangian into ‘scalar part’ form, and
observe that there are various symmetrical ways of doing so:

L = 1
2
B ∨ I[B] = 1

2
I[B] ∨B = 〈1

2
B Ir I[B]〉 = 〈1

2
Ir B I[B]〉 = · · · ,

where Ir is the reciprocal of the PGA pseudoscalar, Ir = Ĩdε
r. We thus had to invoke the

‘dual space’ to PGA to use this conversion technique, see [13].
We need to set up the lagrangian equations, which follows from the calculus of variations.

Classically, variation is characterized through varying (generalized) coordinates, but in GA
we can simply vary the motors of the orbits instead [9]. The lagrangian equations thus
involve differentiating to the motor M corresponding to B. However, motors are normalized,
so this would involve imposing a normalization condition. That can be incorporated using
a Lagrange multiplier (as in the non-PGA treatment of GA lagrangian in [9] section 12.1.3,
and also in the CGA method of [22] – which embeds PGA in a non-degenerate algebra of one
more dimension), but we prefer to proceed more directly. We introduce a spinor ψ as the
non-normalized M ; then B = −2ψ−1 ψ̇. Then invoking some standard differentiation results
(see Exercise 21), we find that evaluating ∂ψL − d

dt
∂ψ̇L = 0 ultimately leads to:

Ir I[Ḃ] = B × (Ir I[B]) = 1
2
B Ir I[B]− 1

2
Ir I[B]B = Ir (B × I[B]), (2.38)

where we used that our lagrangian has a symmetry which allows us to substitute IrB for
B Ir, so this is admissible in its solutions as well (even though in general B×Ir 6= 0). We thus
indeed retrieve the PGA version of the forqueless Newton/Euler equations I[Ḃ] = B × I[B]
from the lagrangian method.
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2.8 Connection to Other 6D Formalisms

We mentioned a few times that there are aspects to the PGA approach that are reminiscent of
other frameworks to treat Newtonian dynamics, also recognizing that there is a 6D structure
to the equations. We briefly treat three of them here, to show awareness and to point to
bodies of literature that should contain interesting results in a usable format.

• Screw Theory
In the nineteenth century, a group of British mathematicians (among them Ball, Study,
Clifford) found a 6D formulation of classical mechanics in which we recognize much of
the elements of 3D PGA, now known as Screw Theory. It was based on an algebraic
encoding of lines, which as we have seen are central to modelling mechanics. The main
difference between Screw Theory and PGA is that the basic elements are formulated in
terms of pairs of 3D vectors (the Plücker coordinates), rather than as a single bivector.
Special rules for the multiplication of these vector pairs, based on dual numbers (i.e.,
numbers of the form a + bε with ε2 = 0), then need to be introduced, to obtain the
proper algebra allowing one to use one 3D vector as an axis direction, and the other
part as a moment.

The modelling of the Newton-Euler equations then exhibits a similar unified pattern to
that in PGA: there are screws called twists that are used to represent the velocity rates,
and co-screws called wrenches used to model forces. The use of vector components feeds
into a matrix-based representation (rather than the motors we use).

Screw theory is of course effective, and has been used especially in robotics. But its
reservation of vectors for the representation of screws makes those unavailable for the
representation of geometrical objects. Therefore Screw Theory feels like an add-on, a
dedicated framework for the treatment of motions only, to which one temporarily needs
to transition to compute those aspects, and those only. It does not interact well with
the modelling of objects.

• Dual Quaternions
For an implementation, the motion operator description of Screw Theory boils down to
the isomorphic structure of dual quaternions. In 3D, the ‘quaternion’ part is the known
efficient algebra of 3D rotations; the ‘dual’ refers to dual numbers, of the form a + bε
with ε2 = 0. When you describe a motion state with coordinates of the form (q1, q2), to
be interpreted as q1 + εq2 (with q1 and q2 quaternions), this data structure exhibits the
right behavior at the coordinate level. Since quaternions are basic data types in many
systems, this leads to efficient implementations.

It is clear from literature, however, that many implementers do not really understand
the geometrical structure of dual quaternions, and as a consequence perform nonsen-
sical operations on them (additions, averaging, component selection, etc.), frequently
ignoring the subtleties of non-commutation. Never perform operations at the coordi-
nate level! PGA embeds the dual quaternions as its motors. Use those motors and
their bivectors as elements, and perform only PGA operations between those entities
– then you will not stray from the meaningful, and you will never need anything more
to generate your code.
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• Spatial Vector Algebra
Roy Featherstone [15] also designed a 6D framework, called Spatial Vector Algebra.
Compared to Screw Theory, it treats the elements more like unified 6D vectors than
as 3D vector pairs. The framework encodes motions (displacements, rates) and forques
in two 6D spaces with a dot product between them to produce the scalar quantity
representing physical work. The separation into two 6D spaces accomplishes what PGA
would view as the Hodge duality within the bivector space of 3D PGA, and it allows
representing the inertia tensor as a symmetric matrix. It comes at a price: Spatial
Vector Algebra does need to introduce two cross products, one for motion element
times motion element and for motion element times spatial force element (which in
PGA are both the same commutator product, applied to different types of bivectors).

Featherstone explicitly observes the additivity of physical quantities like acceleration
and inertia in the framework, and how that waives the need for parallel axis theorems.
He shows [14] how using a 6D framework avoids having add a Coriolis term in the
acceleration, yet produces correct physics. All these advantages are consequences of
describing things in 6D, and also apply to PGA.

But just like the screws in Screw Theory, spatial vectors are a special encoding of
motions, disjoint from the representation of the geometrical objects that should be
moved.

In our view, both frameworks lack the natural simplicity of PGA, following from the insight
that we can use vectors to represent basic elements of geometry (planes), and then employ the
automatically present bivectors and dual bivectors of the algebra to encode their motions. We
believe that this integration with objects makes the algebra of motions more accessible, not
a seemingly disjoint highly specialized single-purpose add-on, and that our demonstrations
show this.

Many useful practical techniques have been developed in Screw Theory and Spatial Vector
Algebra, in a manner and language that can be transferred to 3D PGA without too much
trouble (and in that transferred form, they should work in any dimensionality). An example
of this is our treatment of constrained motion in Section 2.9. We fully expect that the study
of Spatial Vector Algebra and Screw Theory will yield a fruitful harvest for applied PGA,
and that their re-incorporation into PGA will extend the scope of those earlier frameworks.

2.9 Constrained Motion

Often, objects are constrained in their motion, by being attached to other objects in some
way - such as a rotational hinge. This modifies how much of the total forque exerted on the
object can actually be used for the motion. Within the framework, we can treat this in a
structural manner. We briefly suggest how this can be incorporated, taking our inspiration
from the Spatial Vector Algebra approaches. A general GA approach to the same issues may
be found in [19].
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Figure 2.6: From [16]: the dynamics of a robot joint employing the Spatial Vector Algebra
formalism. The PGA solution can follow this almost exactly at the algebraic level. Feather-
stone’s work is a great inspiration for more such solutions.
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2.9.1 6D Approaches to Constraints

We treat an example given in [16], in the form of Figure 2.6. It involves a body 1 with inertia
I1 , acted upon by a total forque F – but this object is connected to a second body 2 with
inertia I2 , via a rotational axis L. As a consequence of this hinge, not all of F will move
body 1, it will somehow have to drag the piggy-backed body 2 along.

The tutorial reference [16] solves this setup in both the classical 3D approach, and in
the 6D Spatial Vector Algebra approach which that paper advertises. In its main text, it
clearly spells out the advantages of the 6D approach, and graciously allows that those same
advantages apply to all related 6D approaches. The paper is highly recommended, since all
such considerations indeed also apply to the PGA of 3-dimensional space – which is 6D in its
bivectors. Let us translate this Spatial Vector Algebra example literally into PGA, to show
how to convert between the frameworks.

As we mentioned above, the main difference is that rather than the 6D vectors of Spatial
Vector Algebra, PGA simply uses the 6-dimensional space of bivectors from 4D PGA. We
then do not need to maintain two dual 6D spaces of vectors, one for displacements and one
for forques, related by a dot product that produces the power, and each involving a slightly
different commutator product. For us, one 6D space of bivectors with a single product suffices,
and the PGA algebra does the administration of the modeled concepts automatically. As we
have seen, doing so still maintains the physically relevant distinction between ‘direct’ bivector
elements such as rates and ‘(Hodge) dual’ bivector elements such as momenta and forques.

Let the hinge axis be characterized by the meet line 2-blade L (rather than the spatial
vector s in Figure 2.6), and its forque (or wrench) transfer by FL, a (dual) bivector. Then
we can translate the first set of equations from the figure to PGA as

F − FL = I1Ḃ1

FL = I2Ḃ2

Ḃ2 = Ḃ1 + αL.

The zero-work constraint for the forque is not just a dot product (as in the Spatial Vector
Algebra framework), but expressed by the join with the meet line L:

L ∨ FL = 0. (2.39)

The solution is then, following very analogous steps:

F1 = I2[Ḃ1 + αL]

0 = L ∨ I2[Ḃ1 + αL]

α = −L ∨ I2[Ḃ1]

L ∨ I2[L]

FL = I2[Ḃ1 − L
L ∨ I2[Ḃ1]

L ∨ I2[L]
]

F =
(
I1 + I2 −

L

L ∨ I2[L]
L ∨ I2

)
[Ḃ1]. (2.40)

The outcome completely corresponds with S39 in Figure 2.6, both in outcome and derivation.

54



2.9. CONSTRAINED MOTION CHAPTER 2. GEOMETRICAL PHYSICS

2.9.2 PGA Constraint Geometry

The Spatial Vector Algebra approach of Figure 2.6 looks somewhat more straightforward,
since it can use a dot product in the solution rather than the unfamiliar join product ∨.
Expressing the dot product as a transpose then combines well with the matrix encoding of
the inertias. The price for this dot product is the need to maintain two 6-dimensional spaces,
for motion rates and for forques. Numerically, the computation on the coefficients is exactly
the same in both frameworks, and equally efficient.

To write the solution eq.(2.40) more compactly, we can define a special scalar product
ruled by the inertia I2 of object 2, to be used between two bivectors X and Y . In this, I2
plays the role of a metric.

X ∗2 Y ≡ X̃ ∨ I2[Y ]. (2.41)

Then L ∗2 L measures an ‘inertial norm’ of the line.
We now define the linear bivector-valued bivector function RL[ ] as

RL2 [X] ≡ X − L

L̃ ∨ I2[L]
L̃ ∨ I2[X]

= X − L

L ∗2 L
L ∗2 X

= X − L−1 (L ∗2 X).

We recognize this as the rejection of the quantity X by the axis L, in terms of that new scalar
product based on the inertia of body 2. Then the expression for F can be written compactly
in terms of the linear maps I1, I2 and RL2 as

F = (I1 + I2 ◦ RL2)[Ḃ1],

indicating that part of the acceleration gets absorbed by L, and only the rejected remainder
feels the inertia of body 2. The given F has to cause that motion, as well as the motion of
body 1. We solve for Ḃ1 in closed form as

Ḃ1 =
(
I1 + I2 ◦ RL2

)−1
[F ]. (2.42)

This is thus the rate acceleration of body 1, modified from what F would give by the presence
of body 2 through the axis joint L.

There is a great contrast of either of these two compact solutions (in Spatial Vector
Algebra, or in PGA) with the much more involved classical approach. The differences are
very well enumerated in [16] for Spatial Vector Algebra when it shows the classical solution
explicitly; and they apply just as well to PGA.

2.9.3 Constraints in General

For general constraints, we would propose to convert the algebraic methods from Spatial
Vector Algebra [15] to PGA, since they are the best around, and in their 6D framework very
closely related to PGA.
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General constraints between two bodies can then be modelled locally as linear conditions
on the relative rate bivector, requiring it to lie (locally) in a linear subspace S of the bivector
space which may be represented by a k-blade S, for k constraints. If we provide the bivector
space with a basis si, then the constraint space S is a linear combination of those basis
vectors.

(B2 −B1) ∧ S = 0.

Both Bi and S are meet lines in this equation.
The algebraic and computational processing of such constraints should closely follow

the methods of Spatial Vector Algebra. It may be that the ability to combine constraints
using meet and join provides some additional geometrical insights, but this remains to be
explored. Certainly the matrix methods of Spatial Vector Algebra should be mimicked in
PGA implementations, since they are highly efficient. Details of those may be found in [15];
a treatment of multiple constraints in a GA setting is [19].

2.10 Wrapping Up (for Now)

We hope to have demonstrated, on paper and on your screen, that PGA is a very attractive
framework for dynamics. Its effective 6D motion description at the (dual) bivector level
was found before, as the key algebraic structures behind Screw Theory and Spatial Vector
Algebra, but the way in which PGA integrates that physical motion with the representation
of the objects that actually do the moving is truly unique and useful.

2.10.1 Dimension-Agnostic by Complementary Representation

We have moreover found that the specification of typical situations (like the demo of a damped
Hooke spring under gravity) can be done in a manner that is dimension-independent: literally
the same program works in any dimensionality. The actually required dimension is conveyed
in the initial conditions (such as where the starting state is relative to a gravity direction),
not in the program’s operations.

The reason that this could be done is that PGA represents all situations in a dual manner,
i.e., by orthogonal complementation. When you state that gravity works in a direction e1, we
encode that by using the bivector ε∧ e1. For us, the vector e1 is a plane with normal vector
e1; this exists in all higher dimensions. Only if you want to draw it do you care how many
dimensions to fill; but this is display, not algebra. The dual description by a normal vector is
sufficient; the actual plane will fill all the other dimensions e2, e3, · · · of any space properly,
and as required. This holds whether you realized that you would go to higher dimensions
when you designed your program, or not (we show an example of this in the tricycle demo
below). There is no need to adapt that first low-dimensional description as we find ourselves
in more dimensions later on. (This contrasts with the common usage of having the vertical
direction be the ‘last coordinate’: e2 in 2D, e3 in 3D - which such inconvenient conventions
for the most important problem dimension, it is no wonder that a program for 2D does not
extend easily to 3D...)

The effect of this dual representation extends beyond the forces – it also helps the kine-
matics.
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When we need to develop a demo of a tricyle moving in a plane, we first draw a 2D
picture in [13], as in the left picture in Figure 1.2. We find the steering pivoting
around a point by angle φ, and naturally find the center of rotation as the meet
of the lines f(φ) and r of the front and rear axles. That center of rotation is a
point; and because lines are our vectors in 2D, the meet r ∧ f(φ) is a 2-vector,
and the rotation around the center of rotation is generated by a motor that is
its exponential exp(r ∧ f(φ) t). All this can be expressed through ε, e1 and e2,
as the normal vectors of the 2D lines involved (which is a dual, i.e., orthogonal
specification). Running a tricycle is a 2D problem.

Having done the essential analysis in 2D, we wanted to implement in 3D, to
have a nicely realistic tricycle. In 3D, rotations require an axis, not a point. We
can find this axis by setting up vertical planes ruled by the lines of the front
and rear axles, and intersect those to get the rotation axis through the center of
rotation. This would appear to be a new, and somewhat involved, re-computation
of the 2D case. But it is neither.

In PGA, the specification in 2D of the axle lines r and f(φ) was done by
their line normals, in 2D PGA involving the vectors e1, e1 and ε. Those same
normal vectors, reinterpreted in 3D PGA, now represent the corresponding ver-
tical planes. In that 3D interpretation of the algebraic computation, the meet
r ∧ f(φ) is literally the intersection of two planes r and f(φ), a 2-vector which
is a 3D axis of rotation. The 3D motor is thus exp(r ∧ f(φ) t). It is exactly the
same PGA formula as what we already computed in the 2D case, in form and
contents, involving only the vectors e1 and e2 of the original 2D specification. In
3D, it generates the motion parallel to that 2D plane as embedded in 3D – just
as we wanted. Exactly the same algebraic element obtains the correct geometric
meaning adjusted to the available dimensionality.

So if you use the complementary specification, solving a problem in the lowest dimension in
which it can sensibly be defined also solves it for all higher dimensions. It solves it literally:
the program for 2D is identical to the program for 3D; only the graphics display part of
the code needs to be aware of the dimension in which you ultimately desire to convey the
computed results.

2.10.2 Covariantly Moving Objects

In [13], we clarified that PGA is ‘Plane-based Geometric Algebra’, and we had a different
reason for motivating the use of (dual) planes, rather than points, as the basic elements of
our description of Euclidean geometry.

We first adopted the Kleinian general view of seeing the motions (‘symmetries’) of a
geometry as fundamental (so, not the moving objects themselves); then we were inspired
by Cartan-Dieudonné to encode motions as multiple reflections. We recalled that Clifford’s
geometric product can perform reflections in an equivariant manner by sandwiching. And
with the realization that Euclidean motions can be made by multiple reflections in planes,
it became natural to set things up as the geometric algebra of a vector space in which the
algebraic vectors are geometric planes. That gave us code that was capable of moving any
element that could be made as a linear combination of geometric products.
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In a second step, we then realized that the invariant and equivariant elements of Eu-
clidean geometry could be made from the symmetric and anti-symmetric combination of
their invariants under the geometric product. The latter defined the meet of planes (which
produces a 3D line as the meet of two planes, a 3D point as the meet of three planes, etc.).
We also found it convenient to define a dual operation to the meet, which allowed us to
compose elements as the join (for instance, a line in d-D as the join of two points, themselves
represented as d-vectors). Deep down, those derived ‘products’ are all indeed expressible
as linear combinations of geometric products; therefore elements made as meet and join of
(hyper)planes move (anti-)equivariantly.6 That greatly simplifies code: only the universally
applicable operations of sandwiching and projection remain.

2.10.3 PGA: Two for the Price of One

It is a pleasant surprise that the two design criteria: dimension-free specification of physical
situations (such as: the instantaneous motion of a mass points occurs along a line, whatever
the dimension), and equivariant representation of moving elements (founded in the Cartan-
Dieudonné view), both can be met by the same PGA approach. The former leads to dual
bivectors as the way to encode momenta and forques, the latter leads to (hyper)planes as
basic descriptors. The two coexist in PGA by its inherently dual structure. Since meet, join
and sandwich product are all founded in the same geometric product, one obtains a unified
computational framework that can be used immediately to implement the physical situation
(as we demonstrated in our examples).

2.10.4 Other Physical Geometries

We have focussed on Euclidean geometry, since it is obviously useful in description and
depiction of the physical world at our human scale. But these same principles of organizing
one’s representation extend beyond that.

1. Charles Gunn [17] has shown how to use the structure of PGA to encode dynamics
in a metric-free way (by pinpointing the non-metric duality underlying it, rather than
using the metric duality we used). This extends Euclidean dynamics of the PGA Rd,0,1

naturally to elliptic dynamics in the PGA Rd+1,0,0 and hyperbolic dynamics in the PGA
Rd,1,0. In all these PGAs, the equations of motion are the same, by judicious use of
projective duality.

2. The kinematics of conformal geometry is treated in a different algebra called CGA
(conformal geometric algebra). But CGA can easily be seen as an extension of PGA,
where we use dual spheres rather than dual planes as vectors. This requires one more
orthogonal representational dimension, but planes are still there, as spheres passing
through infinity. So CGA is fully backwards compatible with PGA. The converse point
of view is articulated well in [8]. Conformal dynamics has not been developed yet, but
could (and we would not be surprised to find Maxwell taking over from Newton there).

6It was not mentioned in [13], but the join transforms anti-equivariantly: it requires a minus sign for odd
reflections (relative to reflecting a meet element). This is actually related to its orientation type, which is
internal. More about this in a future version of [13].

58



2.10. WRAPPING UP (FOR NOW) CHAPTER 2. GEOMETRICAL PHYSICS

3. Space-time algebra (STA) has the Minkowski space as its playground; its motors cause
the Lorentz transformations as its kinematics. A PGA version of STA (to be called
STAP) is being developed by Martin Roelfs; spin promises to be integrated very nicely.

4. The treatment of other physical symmetries, such as SU(3), can similarly benefit from
the Cartan-Dieudonné treatment, see [24]. Once in GA, an orthogonal factorization of
the Lie algebra is simply one of the natural bivector decompositions; but it produces a
new result for the analysis of Gell-Mann operators.

5. Projective geometry in 3D attains a canonical form in the geometric algebra R3,3, of
the space of lines and screws: projective transformations become versors [12]. It should
be possible to integrate this naturally with PGA, where meet lines are its bivectors.
This remains to be done.

6. Some GA proposals, such as the representation of quadrics [2], do not put the motions
central, but instead appear to be satisfied to represent the objects by themselves by
meet and join. This leads to very high-dimensional algebras of which the symmetries
are much more extensive than the usual collineations – and these are then not really
used at all. We feel that such a ‘waste of space’ confirms that the ‘object-first’ method
to design an algebra is the wrong way around...

We find it very refreshing to dive into these other geometries with these novel organiza-
tional principles in mind. Many advanced results can be better understood in their light;
other results can be simplified to their essence; and some completely new results are begin-
ning to be found. The PGA of Euclidean geometry and Newtonian physics is sufficiently rich
and concrete to serve as a guiding model for inspiration.
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Appendix A

Correspondence to Vector CM

When writing this tutorial text, we found ourselves checking in detail that the very lean PGA
expressions indeed contain all vector relationships (and more) in the usual way of teaching
Classical Mechanics. This was originally interwoven with the PGA explanations of the main
text, which actually obscured the subject. But since many of our readers may have the
same atavistic need of establishing the relationships with ‘the way we learned it’, we decided
to enclose such material anyway. It forms the next two appendices of this tutorial. Read
them in correspondence with the PGA material (in the PDF, click a link, and when done
Alt-RightArrow to return), and you will hopefully find that it clarifies both frameworks.

A.1 Breaking Equivariance by Splitting

Classical mechanics uses an algebra of vectors that is not capable of expressing things without
assuming an origin. Unfortunately, that origin may vary with circumstances or needs (from
world origin to body centroid, for different bodies) and it is not in the formulas but only
in the text; therefore the vector-based formulas are incomplete by themselves, and require
following certain conventions to apply them correctly (like the addition of extraneous terms
by hand, using facts like the parallel axis theorem).

But changes of viewpoint are quite easy in the equivariant geometric approach of PGA,
and all is fully encoded in the algebraic expression of the geometrical entities. We see the
classical formulas appear as certain factors of terms within the invariant expressions, when we
pick suitably chosen Euclidean splits and point splits corresponding to the classical changes
of viewpoint. PGA moreover allows us to work directly with the physical quantities, without
splitting them.

This chapter collects the various splits of the PGA quantities to show that and how the
classical formulation is subsumed; you then clearly see how nothing is lost, but much is gained
by the invariant formulation.
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A.2 Velocity

We may compute the time derivative of a point as eq.(2.10) by commutation with a general
bivector of the Euclidean split form Bw = Bw + εvw according to eq.(2.8):

Ẋ = X ×Bw

= (O + xI)× (Bw + εvw)

= 1
2
(O εvw − εvw O + x I Bw + Bw x I)

= (vw + x ·Bw) I. (A.1)

This should be equal to Ẋ = ẋwI of eq.(2.10), so we find that, in terms of the world frame
rate bivector Bw = Bw + εvw, the velocity vector of the point motion is

ẋw = vw + x ·Bw. (A.2)

This structure conveys the classical meaning of the Euclidean split components of velocity
rate Bw = Bw + εvw: a translational motion by vw, and a rotating motion by Bw converted
to classical 3D vector notation, x · Bw is the cross product bw × x of rotation axis vector
bwI3 ≡ Bw and location vector x, which is the familiar classical expression for rotational
speed. Check: x ·Bw = x · (bwI3) = (x∧bw) I3 = bw × x (where the × denotes the classical
cross product).

A.3 Body Inertia

In eq.(2.14) we defined the PGA inertia Ib[]. Let us see how this relates to the classical inertia
in GA bivector form, which is

IC [Bb] ≡ Σimi ri ∧ (ri ·Bb). (A.3)

We introduce the Euclidean split Bb = M̃BwM = Bb + εvb for the bivector experienced in
the body frame, as in Section 2.2.4.

Ib[Bb] ≡ M̃
(
ΣimiXi ∨ (Xi × (MBbM̃)

)
M

= Σimi (M̃XiM) ∨
(
(M̃XiM)×Bb

)
= Σimi (O + riI) ∨

(
(O + riI)×Bb

)
= ΣimiO ∨

(
O ×Bb

)
+ 0 + Σimi (riI) ∨

(
(riI)×Bb

)
= mO ∨ (O ×Bb) + Σimi (riI) ∨

(
(riI)×Bb

)
= mO ∨

(
O × (εvb)

)
− Σimi ri ∧ (ri ·Bb) I

= mvb ·O − IC [Bb] I. (A.4)

We see that Ib[Bb] contains components relating to the classical mass in the momentum mvb,
and includes the classical bivector inertia IC [Bb] as its non-Euclidean part. Note that eq.(A.4)
is both a ‘Euclidean split’ (see eq.(1.6)) and a ‘point split’ relative to the origin O = C of
the body frame (see eq.(1.8)).
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We will also need the inverse of the body inertia. From the above, this may be specified
as:

Ib
−1[v ·O −BI] = εv/m+ I−1

C [B], (A.5)

where we parametrized the Euclidean split of its argument in a particularly useful form.

A.4 Classical Inertia as Bivector Map

The GA version of the classical inertia operator [20, 9],

B → IC [B] ≡ Σimi ri ∧ (ri ·B),

converts a Euclidean bivector B into another Euclidean bivector IC [B]. So it is a mapping
that changes a PGA origin hyperline (or axis) into another origin hyperline. The consequence
is that when we turn an object around the axis B, the lopsidedness of the object actually
contributes to the angular momentum along a transformed axis. Every mass point contributes
to this conversion, but the heavier points further away from the centroid affect it more.

Figure A.1 provides an illustration of the contribution of a single mass point with mass
mi at relative location ri (relative to the body centroid at c, through which B passes in this
classical Euclidean setup). In the expression ri ∧ (ri ·B), the input line B is brought to lie in
the plane orthogonal to position vector ri, by tilting it in the plane ri ·B passing through B
and the position vector ri. The magnitude of the contribution to the remapping by the mass
mi is proportional to mir

2
i ; so (for a fixed direction) the distance ‖ri‖ of the mass point to

the centroid is even more relevant than its mass mi in determining how much the input line
B changes due to the mass point: points away from the rotation axis contribute more.

A small note on the ‘naturalness’ of PGA: in the usual 3D GA treatment in a 3D vector
space, we always identify the 2-blade B with an invariant plane (since 2-blades represent
planes through the origin in that algebra), and then have to make the argument that this
rotation plane is more natural as a characterization of a rotation than the usual rotation axis
(which is then dual to it). In 3D PGA, the bivector B is immediately the representation of a
meet line through the origin (it is the meet of two hyperplanes), so we can revert to simply
seeing the 2-blade B as the representation of the invariant rotation axis rather than of the
invariant rotation plane. In 3D, the exponential of the invariant axis is the rotation motor
around it. PGA also clears up the situation for 2D, where a rotation still keeps a 2-dimensional
subspace invariant. Now its rotation rate 2-blade is the PGA representation of an invariant
2D point, the center of rotation. Thus PGA has no need to introduce the artificial concept
of an extraneous 3D axis to describe rotations in 2D: a 2D axis is a point, automatically, and
you do not need more to describe the motion it generates by straightforward exponentiation.

A.5 Eigenstructure of the Classical Inertia IC [ ]

The seemingly involved classical inertia map in the body frame, IC [B] ≡ Σimi ri∧(ri ·B), can
be characterized compactly. That fact is actually the reason why we went to the body frame:
it is easy to specify inertia there when you know your object. This IC [ ] is a linear mapping,
and it is symmetric, in the sense that A · IC [B] = B · IC [A]. (Exercise 4 in Section D asks
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Figure A.1: The geometry of the classical inertia map in 3D. A mass mi at relative location
ri rotating around an axis B gives a contribution Bi = mi ri ∧ (ri · B) to the inertia map
IC [B], perpendicular to ri in the common plane through ri and B (denoted in yellow). Adding
these contributions for all points gives the angular momentum axis, which therefore usually
differs in its direction from the rotational axis B.

you to show this.) Standard linear algebra then informs us that we can perform a spectral
decomposition on IC [ ]: we can find three orthogonal 2-blades (i.e., PGA origin lines) Ej that
are eigenblades of IC [ ], and we can find their eigenvalues ij. (Here our notation in 3D is that
E3 = e1e2, and cyclic.) The corresponding equation,

IC [Ej] = ijEj,

can be solved by standard linear algebra techniques (notably by viewing IC [ ] as a matrix on
a vector space formed by the coordinate 2-blades and performing an eigenanalysis).

Then in this frame adapted to Ej, the inertia map can be written as an eigenvalue-
weighted sum of components:

IC [B] = Σj ij (B · Ẽj) Ej.

(In LA terms, the matrix of IC [ ] can be diagonalized.) For the particular form of the map
IC [ ], all eigenvalues are non-negative, and so the minimum inertia is achieved for a B aligned
with the Ej of the smallest eigenvalue ij. This works unchanged in d-dimensional space; IC []
is always a linear symmetric map, with a d-dimensional eigenbasis of orthogonal 2-vectors.

A.6 Full Eigenstructure of the Body Inertia

In PGA, the classical body inertia IC [ ] term is only the rotational part of the total inertia
Iw[ ]. But in full PGA, the inertia map also contains a translational consequence to having
mass moving: it is called (linear) momentum. (In d-dimensional PGA, there are d more
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translations, to augment the
(
d
2

)
directional inertias, for a total of

(
d+1

2

)
bivectors.) Let us

study the body frame version Ib[Bb] of that total PGA inertia Iw[ ] and its eigenstructure.
As we derived in eq.(A.4), the total PGA inertia in the body frame at the centroid looks

like the map
Bb = Bb + εvb 7→ Ib[Bb] ≡ mvb ·O − IC [Bb] I. (A.6)

This PGA inertia is not a symmetric map, and therefore it cannot be diagonalized on an
eigenbasis. However, a modified form of diagonalization still applies.

Using the eigenstructure of the classical inertia, the principal eigenblades Ek of the classi-
cal inertia operator IC [ ] become, in the total body inertia transformed to a weighted version
of their dual bivectors:

Ib[Ek] = −ik EkI = ik ?Ek. (A.7)

We used the Hodge dual ?( ) to rewrite the result in a general form. This Hodge dual of an

element is defined through X(?X) = XX̃ I, where X is the Euclidean factor in X. For a
normalized bivector E, this implies E ?E = I, so if E is a Euclidean bivector Ei, the Hodge
dual is equal to ?Ei = −EiI, and for a bivector of the form εei, we get ?(εei) = eiId.

Due to the factor I which the Ek accrue, they are no longer eigenelements of the total
body inertia mapping. You really would not expect them to be in d-D, since the grades of
input and output of the inertia map differ (3D is confusing: bivector in, bivector out). But
the Ek are clearly still useful in specifying it compactly.

The remaining (non-Euclidean) bivectors in PGA are of the form εei (ideal meet line
rates, generating translational motion). These are mapped by the total PGA inertia eq.(A.6)
to (d − 1)-blades, and this can again be written as mapping to a multiple of their Hodge
dual:

Ib[εek] = m ek ·O = m ?(εek), (A.8)

Thus we see from eq.(A.7) and eq.(A.8) that both for angular rates and linear rates, the
inertial map effectively can be viewed as a weighted Hodge dual in Rd,0,1. It converts 2-
vectors to (d−1)-vectors, weighing them with aspects of the mass distribution. We therefore
may call Ib[] the inertia duality map.

Let us show the 3D inertia map in a bit more detail. In 3D PGA, Ib[E1I3] = Ib[εe1] =
m e1 · I3 = m e23 = mE1, and cyclic, and Ib[E1] = i1 Ib[e2e3] = i1 εe1 = i1E1I3 and cyclic.
Taking a body frame basis {E1, E2, E3, E1I3, E2I3, E3I3} = {e23, e31, e12, e01, e02, e03}, the
linear 3D inertia map has a matrix that looks like two off-diagonal diagonal 3× 3 matrices:

0 0 0 m 0 0
0 0 0 0 m 0
0 0 0 0 0 m
i1 0 0 0 0 0
0 i2 0 0 0 0
0 0 i3 0 0 0

 =

[
O mI
IC O

]

Its off-diagonal diagonal structure clearly reveals that it is a duality mapping in 3D: meet
lines become join lines (and vice versa). These considerations motivate the computation of
the PGA inertia in the body frame by the algorithm spelled out in Section 2.2.5. You may
want to see how it looks in 2D, using exercise D.9.
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A.7 Parallel Axis Theorem: No Longer Needed

In the use of the classical inertia in a vector-based framework, you need the Parallel Axis
Theorem (also known as Steiner’s Theorem):

Moving the origin axis (relative to which we computed the inertia IC [Bb]) to pass
instead through a point with location vector q in the local frame increases the
inertia IC [Bb] by an additional term mq ∧ (q ·Bb).

The classical GA proof is simple, so we repeat it. In the definition of IC [B] ≡ Σimi ri∧(ri ·B),
we summed over points with locations ri relative to the centroid, and Σiri = 0. Now consider
r′i ≡ ri−q, local vectors measured relative to a point Q. Then the classical inertia IC [Bb]

′ of
the object turning around that point Q with the same angular velocity Bb is

IC [Bb]
′ ≡ Σimi r

′
i ∧ (r′i ·Bb)

= Σimi (ri − q) ∧ ((ri − q) ·Bb)

= Σimi

(
ri ∧ (ri ·Bb)− q ∧ (ri ·Bb)− ri ∧ (q ·Bb) + q ∧ (q ·Bb)

)
= IC [Bb] + q ∧ (q ·Bb). (A.9)

If we would like to compose inertias of a composite object, we can use the classical inertias of
the individual parts, but we will have to make sure we add terms that correspond to how they
are displaced relative to the new centroid. This cumbersome necessity is common practice
in classical mechanics classes: when you want another viewpoint, you change the mapping.
Seems natural.

In PGA, there is no longer any need for a parallel axis theorem for inertias: if you evaluate
the current body inertia Ib[ ] on the new displaced axis, which is Bb − ε (q ·Bb) rather than
Bb (in the Euclidean split encoding that classical usage), it provides the correct result. In
PGA inertia, we simply change the argument, not the mapping. Let us show that in detail
to convince you how eq.(A.9) is embedded inherently in PGA; for clarity in the comparison,
let us take a pure rotation rate Bb (no translational velocity).

Ib[TqBbT̃q] = Ib[Bb − ε(q ·Bb)]

= −m (q ·Bb) · (O + qI)− IC [Bb] I
= −m (q ·Bb) ·Q+m (q ·Bb) · (qI)− IC [Bb] I
= −m (q ·Bb) ·Q−

(
IC [Bb] +mq ∧ (q ·Bb)

)
I.

We have performed the point split to the new point Q. It shows that for the new values of
the classical momentum and inertia, there is a contribution −m (q ·Bb) to the translational
momentum, since the centroid now moves at the velocity −q · Bb [[[ but sdo we care
how teh cetnroid moves? Should we not want Q? ]]] and an additional contribution
mq ∧ (q · Bb) to the angular momentum. Thus the inertia term of the parallel axis has

appeared automatically, merely by evaluating the PGA inertia Ib[] on the new axis TqBbT̃q,
and insisting on a classical split representation of its outcome.

The PGA inertia maps are valid anywhere; their specific outcome for a different situation
is determined by the inherently spatial nature of the arguments they are given. Thus the PGA
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body inertia map Ib[ ] itself does not need to change to accommodate a change of viewpoint;
it has all viewpoint aspects embodied in its ability to deal with fully geometrical arguments
(like axes). When you want the inertia for a different velocity state, you just give that new
state as argument to the mapping. Enjoy this natural simplicity!

A.8 Linear and Angular Momentum

Classically, linear and angular momenta are treated separately. In PGA they are integrated in
the momentum bivector P of eq.(2.11). That turns out to be convenient, and it is what is used
to evaluate the dynamics. However, you may be curious how this new concept corresponds to
the classical description. In this section, we show that the point split of the total momentum
P relative to the centroid C is

P = p · C − L I. (A.10)

Here p is the classical linear momentum vector and L is the GA/classical angular momentum
bivector, both in the world frame. In 3D, you may also write the last term in terms of the
angular momentum vector l ≡ L/I3 as −LI3 = εl. Note that a single mass point only has a
linear momentum p · C, see Exercise D.10.

We recommend against this needless splitting of the total inertia in PGA, but it is ed-
ucational to do it just once. The outcome clearly shows the additional precision of PGA
(since p · C is the momentum line passing through the point C; classically, such positional
aspects as C needed to be stated explicitly and separately in natural language in the text,
rather than within the algebra). Yet it also shows how the classical parts are individually
retrievable from the total momentum. (One can retrieve p from the Euclidean part p ·O of
P , then remove p · (cI) from the ideal part to obtain LI and hence the Euclidean quantity
L.) We have thus not lost anything by moving to PGA, but actually gained unification and
precision.1

Let us derive eq.(A.10) in a number of steps.

• Euclidean split conversion: First, we use eq.(A.4) to express the world inertia in
terms of the classical inertia IC [ ] as

P = Iw[Bw] = M
(
mvb ·O − IC [Bb] I

)
M̃, (A.11)

employing the body quantities Bb and vb in the Euclidean split Bb = Bb + εvb. Their
relationship to the Euclidean split for the world Bw = Bw + εvw is rather subtle,
it is not simply Bw = MBbM̃ and vw = MvbM̃ , since M introduces ε-containing
elements. Rather, the conversions are related to the (rather unnatural) split of the
motor M = TcR, as an origin rotation R and the translation Tc to the centroid. (This
is clearly non-equivariant since it involves the origin; but it is commonly used in classical

1We show in Section 2.8 that Screw Theory and the Spatial Vector Algebra framework unify the two
momentum components as well; they do so by extending the representational vector spaces to distinguish
them, rather than by simply employing the bivector space of their algebras.
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texts, including the GA-bivector treatment before PGA.)

Bw = MBbM̃

= Tc (RBbR̃) T̃c +MεvbM̃

= RBbR̃− ε c · (RBbR̃) +MεvbM̃

= RBbR̃ + ε
(
RvbR̃− c · (RBbR̃)

)
= Bw + εvw. (A.12)

So the Euclidean split in the world frame relates to the Euclidean split in the body
frame as

Bw = RBbR̃ (A.13)

vw = RvbR̃− c · (RBbR̃). (A.14)

The velocity of the centroid is then:

ċ = RvbR̃ = vw + c ·Bw,

as expected, see eq.(A.2).

• Linear momentum p: The classical linear momentum is the mass times the velocity
of the centroid C = MOM̃ . Hence the term mvb · O in eq.(A.11) transforms to the
world frame quantity

M (mvb ·O) M̃ = mvw · C = p · C.

This is the PGA representation of the line that has the direction of the classical world
momentum vector p, and passes through C.

• Angular momentum: The classical inertia IC [ ] is computed in eq.(A.11) in a term
that is multiplied by the null pseudoscalar I. That destroys all translational parts, and
is thus purely rotational.

M (IC [Bb] I) M̃ = TcR IC [Bb] R̃T̃c I
= R IC [Bb] R̃ I. (A.15)

The outcome indicates how a rotational rate Bb in the body frame becomes the angular
component of the total momentum. The resulting quantity is therefore recognizable as
(I times) the GA/classical angular momentum 2-blade L in the world frame.

We thus find the relationship P = p ·C −L I between the total PGA momentum P and the
classical constituents p and L – augmented by their customarily hidden need to specify the
point C.
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A.9 Total Forque, but Split

We can split the total forque of eq.(2.27) in its force and torque parts, if you need that to
confirm that its definition make sense.

F = ΣiFi = Σi fi ·Qi = Σi (fi ·O −Ti I) = f ·O −TO I, (A.16)

where f = Σifi is the total force and TO ≡ ΣiTi = Σiqi ∧ fi the total torque (relative to O).
Thus this point split of F relative to the origin O shows the classical GA form of the total
torque, in terms of the position vectors qi of the masses relative to that origin. We emphasize
that it is completely unnecessary to split the forque F before using it.

A.10 Newton and Euler Indeed Included

The PGA equation of motion in Table 2.1 are so compact that the reader may need convinc-
ing that they do indeed contain the classical equations (unless you are already familiar with
similar 6D frameworks, such as Spatial Vector Algebra [16], then you would be disappointed
if PGA did not!). So let us decompose them, merely for this purpose, into equations gov-
erning the linear motion (Euler’s first law) and angular motion (Euler’s second law). We do
emphasize that this is unnecessary, eq.(2.28)-eq.(2.30) are complete, and solvable as they are
– as our implementations of Section 2.5 show!

A.10.1 Body Frame Equations

In essence the equation for Ḃb in the body frame is the straightforward

Fb = Ṗb = İb[Bb] = Ib[Ḃb]. (A.17)

To establish the correspondence with the classical equations, we split forque and inertia into
their Euclidean and ideal parts relative to the origin O.

fb ·O −Tb I = İb[Bb + εvb]

= Ib[Ḃb + εv̇b]

= m v̇b ·O − IC [Ḃb] I.

By Theorem 1 in Appendix C.4, we are allowed to just equate the obviously corresponding
parts, leading to the familiar classical Newton/Euler equations in the body frame

Euler’s first law: m v̇b = fb (A.18)

Euler’s second law: IC [Ḃb] = Tb, (A.19)

In this form, the Euler equations of motion separate the translational and rotational aspects,
which remain united in the PGA approach.

68



A.10. NEWTON AND EULER INDEED INCLUDEDAPPENDIX A. CORRESPONDENCE TO VECTOR CM

A.10.2 World Frame Equations

It is perhaps more common to represent these equations in the world frame (especially the
first one). But we have to be careful, since merely applying the motor M does not perform
the necessary conversion: splitting into Euclidean and non-Euclidean is not an equivariant
operation (i.e., the transform of the Euclidean part is not the Euclidean part of the transform).

Let us first transform the force Fb and (to correspond to the classical approach) study the
effect of the rotational part R and translational part Tc of M = TcR separately. We define
fw ≡ R fb R̃ and TwC = RTbO R̃, to improve readability. Then

Fw = MFbM̃ (unsplit)

= TcR (fb ·O −TbO I) R̃T̃c

= (TcR fbR̃T̃c) · C − (RTbOR̃) I
= (TcfwT̃c) · C −TwC I
= fw · C −TwC I (point split for C) (A.20)

= fw ·O − (c ∧ fw + TwC) I. (Euclidean split) (A.21)

We presented two forms of the final result: eq.(A.20) relative to the newly displaced centroid
C where the force attaches, and eq.(A.21) relative to the arbitrary origin O in the world
frame. It is clear that the former is simpler, and we used it to define the world frame torque
TwC relative to C as TwC ≡ RTbOR̃. But note that we departed from the strict separation
between Euclidean and non-Euclidean to do so (in writing the point split for C rather than
O). In the truly classical treatments, one tends to work in what we called the Euclidean
split, relative to the arbitrary origin (as in eq.(A.21))). One then experiences an augmented
torque TwC + c ∧ fw merely due to the offset of O to C.

So much for the forque part. We also need to convert the right hand side motion term
İb[Bb] = Ib[Ḃb] of eq.(A.17) to the world frame. This is done by applying M to Ib[ ], but we
also should convert its argument Ḃb and relate it to Ḃw. In general, derivatives transform not
straightforwardly between body frame and world frame (as eq.(2.9) shows), but the derivative
of the rate bivector is fortunately the (unique) exception, since Bw ×Bw = 0:

Ḃw = d
dt

(MBbM̃) = Bw ×Bw +MḂbM̃ = MḂbM̃.

So Ḃb simply transforms by applying the versor M , as you might expect from naive pattern
matching with Bw = MBbM̃ (OK, you were right this time, but be careful in general!).

In order to apply eq.(A.4), we need to split the argument Bb = M̃BwM into its Euclidean
and ideal parts. This is not simply the M -transform of the Euclidean and ideal parts of Ḃb;
rather they mix according to

M̃ḂwM = M̃(Ḃw + εv̇w)M

= R̃T̃c(Ḃw + εv̇w)TcR

= R̃
(
Ḃw + ε (v̇w + c · Ḃw)

)
R

= R̃ḂwR + ε R̃(v̇w + c · Ḃw).
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So the world frame rotational accelaration is experienced in the body frame as R̃ḂwR, and
the world frame accelaration εvw as ε R̃(v̇w + c · Ḃw)R. Using that, we compute in terms of
the world frame quantities

Iw[Ḃw] = M Ib[M̃ḂwM ] M̃

= M Ib[R̃ḂwR + ε R̃(v̇w + c · Ḃw)R] M̃

= mM
(
(R̃(v̇w + c · Ḃw)R) ·O

)
M̃ −R IC [R̃ḂwR] R̃ I

= m (v̇w + c · Ḃw) · C −R IC [R̃ḂwR] R̃ I. (point split for C) (A.22)

This is decomposed to show what happens translationally at the centroid C, and rotationally
in the ideal plane. According to Appendix C.4, it can thus be equated term for term to
eq.(A.20) and we obtain

Euler’s first law: m (v̇w + c · Ḃw) = fw (A.23)

Euler’s second law: R IC [R̃ḂwR] R̃ = TwC , (A.24)

The expression for the linear acceleration looks involved; it contains more than just v̇w; but
this is the correct formula that includes the spatial information. These ‘spatial accelerations’
are additive, without the need to include angular velocity terms like the Coriolis force.2 For
a comparison with the classically used acceleration, see [14] (that text is actually an analysis
within 6D Spatial Vector Algebra but it equally applies to other 6D frameworks like PGA).

As you see, this world frame view of eq.(A.23) and eq.(A.24) is slightly more involved
than the unified body frame equations of eq.(2.28) and eq.(2.29). In PGA, the body frame
view is preferred; the resulting solution for Bb is just as easily integrated to the motor M by
solving Ṁ = −1

2
MBb as it would be to solve M from Bw by Ṁ = −1

2
BwM .

A.11 Summarizing the Atavism

We have repeatedly shown how the integrated PGA concepts embody the classical results
when considered in the various splits. However, we stopped at the classical GA approach, in
which angular momenta and 3D torques are at least already bivectors. For the 3D case, we
now go a bit further, and connect to the antique vector approach still taught in almost all
physics classes. We will adopt commonly used symbols for the entities, so that its correspon-
dence with PGA becomes more obvious. In the end, we will see that very little actually needs
to be added to the antique way to become PGA; in fact, the geometric elements that are men-
tioned in all texts (‘axial vectors are different’, ‘mind relative to what point you calculate’)
simply are attached as actually algebraic computational factors, making correct computa-
tions automatic. It is a small step, but it elevates the classical approach to the equivariant
PGA framework which automatically incorporates the explicitly required antique tricks (like
the parallel axis theorem). This again confirms that PGA provides the proper data structures
to represent dynamics quantities.

2This is very similar to how the combination of PGA inertias does not require Steiner’s ‘parallel axis
theorem’ which the composition of classical inertias needs.
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PGA R3,0,1 decomposition into classical terms split

kinematics rate rotation translation
B = ω ·R + ε∧v point R

bivector = ω ·O + ε∧ (v + r× ω) origin

body properties mass inertia
I[B] = mv ·C + ε∧ Iω centroid

dual bivector = mv ·O + ε∧
(
Iω +m c× (v + ω × c)

)
origin

momentum linear angular
P = p ·C + ε∧ ` centroid

dual bivector = p ·O + ε∧
(
`+ c× p

)
origin

dynamics forque force torque
F = f ·R + ε∧ τ point R

dual bivector = f ·O + ε∧
(
τ + r× f

)
origin

Table A.1: For 3D PGA, we display the transcription of the basic entities B, IC [ ], P and F
(in red) in terms of elements of classical mechanics (in blue). The classically disparate pieces
are recognizable; they can only be added to form a coordinate-independent entity by explicitly
appending the point at which they occur (which in classical physics is in the text, not in the
formula), and meeting with the null vector ε (the hyperplane at infinity). Those two algebraic
measures (in gray) effectively unify axial vectors and regular vectors, into distinguishable
additive bivectors, combining into one invariant quantity.
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• Rates
In the Euclidean split, our rate B = B + εv consists of two parts: a purely Euclidean
2-blade B for the rotational aspect, and a translational part parametrized by a velocity
vector v. Classically, one would characterize the rotational velocity by a vector ω along
the rotation axis. For a counterclockwise B = e1 ∧ e2, one would have ω = e3, so we
can relate the two through

B = ω I3.

This prepares us for expressing various splits using ω:

B = B + εv

= ω · I3 + εv (origin split)

= ω · (I3 + q I3) + εv − ω · (q I3)

= ω ·Q+ ε
(
v − (ω ∧ q) I3

)
= ω ·Q+ ε

(
v + ω × q

)
, (point split Q = O + qI)

where we used the × notation for the 3D cross product a× b ≡ (b ∧ a) I3.

This was actually a special case, since we made the axis of ω pass through the origin O.
In Table A.1, we show the more natural formulation where the ω-axis passes through
an arbitrary point R, and we then develop its split as seen from the arbitrary origin O.
This swaps some signs.

• Inertia
For the inertia, we introduced the classical inertia based on a Euclidean bivector B,
producing a bivector IC [B]. In the antique formulation, one would feed the inertia map
the axial vector ω ≡ B/I3 and expect an axial vector as its outcome. Let us denote
that linear map as Ic (italic I, small c); you can read it as a matrix if you prefer. Then
that map Ic is defined through IC [B] = IC [ω I3] ≡ (Icω) I3.

In the equations, we always have the product with I3 = ε I3, so we can replace IC [B] I
by:

IC [B] I = IC [B] ε I3 = ε Icω I2
3 = −ε Icω.

An expression like c ·B is converted as:

c ·B = c · (ωI3) = (c ∧ ω) I3 = ω × c.

And also
(a ∧ b) I3 = (a ∧ b) ε I3 = ε (a ∧ b) I3 = −ε (a× b).

With those results, the displaced inertia in the origin split is converted to:

−
(
IC [B] +m c ∧ (v + c ·B)

)
I3 = ε

(
Icω +m c× (v + ω × c)

)
.

That is the familiar antique expression, which includes the traditional ‘inertial forces’
due to the frame change.
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• Forques
The antique treatment of a force as a vector f integrates well with the local description
f · Q of a force at a location Q – though in the usual treatment, the Q is in the text,
and not in the formula.

Torque is classically viewed as one of those axial vectors τ , whereas in GA we see it
as a bivector T (which is an axis in 3D PGA, the meet of two planes). Conversion is
simply by the right-hand rule T = τ I3, so that

−T I3 = −εTI3 = ε τ .

Therefore again, the embedding into 3D PGA merely requires a locational post-operation
·Q on the classical linear vector, and a prefactor ε∧ on the classical axial vector.

So basically, the procedure to atavistically revert to antique mechanics is: replace all PGA
symbols for bivectors by their classical counterparts for vectors, and change postmultiply
by I3 into premultiply by ε∧ (and then extract the Euclidean factor as the angular part).
Oh, and drop the all-important location of where things are defined, and hide that part
somewhere in the text accompanying your classical equation.

A.12 Kinetic Energy

Let us see how the PGA definition of kinetic energy TI = 1
2
Bb ∧ Ib[Bb] of eq.(2.34) contains

the classical results, by performing a Euclidean split on it in terms of Bb = Bb + εvb.

Bb ∧ Ib[Bb] = (Bb + εvb) ∧ (mvb ·O − IC [Bb] I)

= mBb ∧ (vb ·O) +m (εvb) ∧ (vb ·O)−Bb (IC [Bb]I)

= 0 + (mvb
2 −Bb · IC [Bb]) I

=
(

1
2
mvb

2 + 1
2

Σ3
k=1 ik [ω]2k

)
(2 I), (A.25)

where we used that Bb = ωI3. Thus the PGA expression indeed contains the classical
expression for kinetic energy as the sum of the classical translational energy and the rotational
energy, and hence defines the scalar kinetic energy T .

A.13 Power

Performing a Euclidean split of the arguments on the PGA power defined by Π I = Bw ∧Fw
of eq.(2.36)confirms the classical result in more detail:

Bw ∧ Fw = (Bw + εvw) ∧ (fw ·O −TwO I)

= (εvw) ∧ (fw ·O)−Bw ∧ (TwO I)

= (vw · fw −Bw ·TwO) I (A.26)

=
(
vw · fw −Bw · (x ∧ fw)

)
I (A.27)

=
(
(vw + x ·Bw) · fw

)
I

=
(
ẋw · fw

)
I (A.28)
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since TwO = x∧fw at the location X and eq.(A.2) gives ẋw ≡ vw+x·Bw. We thus retrieve as
scalar factor the usual expression of displacement times force. The intermediate expression
eq.(A.27) shows that the torque works on the angular velocity Bw, and the force vector fw
on the translational velocity v. But all this is implicitly unified in the forque expression.

A.14 Contact in Classical GA Form

Rewriting of eq.(2.32) can be based on:

Q ∨Q× A = Q ∨Q× (A + εa) = Q ∨
(
(a + q ·A) I

)
= (a + q ·A) ·Q

and the dot product of join lines at a point which simplifies to (v · Q) · (w ·Q)∼ = v · w.
The former is based on a Euclidean split, so it requires the specification of an (arbitrary)
origin to give A and Q coordinates. The inverse inertia maps may be split in each body
frame to involve the classical inertias of each object by eq.(A.5), and then needs to address
the common point Q from each centroid.

Ib
−1[N ] = Ib

−1[n ·Q] = Ib
−1[n · C + (n ∧ (q− c))I] = εn/m+ I−1

C [n ∧ (q− c)],

so each term in the denominator of the expression eq.(2.32) for j becomes of the form:(
Q ∨Q× I−1[N ]

)
· Ñ =

(
n/m+ I−1

C [n ∧ (q− c)] ·Q
)
· (n ·Q)∼

= 1/m+ (q− c) · I−1
C [n ∧ (q− c)] ·Q

)
· (n ·Q)∼

= 1/m+ (n ∧ (q− c)) · I−1
C [n ∧ (q− c)],

for the appropriate m, IC [] and c. This basically retrieves the formula for j in [25], though in
the more symmetrical d-dimensional GA bivector form (rather than the vector form which
holds only in 3D).
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Appendix B

Hand Computation of Simple Cases

B.1 Solving the Free Motion Equation

In simple situations one can solve the equations of motion by hand. Let us show some of
the techniques involved, by considering increasingly complicated settings in the next few
sections. If you are into Computer Graphics, you may skip these sections, since RK4 (or
another preferred numerical integration method) is your tool. But if you are doing classical
mechanics, as study or profession, the techniques will be of interest. (Many of the versor
integration techniques actually transfer to quantum mechanics, done the GA way, so it is
good practice to see them in this tangible classical setting.)

An apology: in the current writeup, we show the correspondence with the classical equa-
tions by solving the PGA equations in split form. This is not in the spirit of PGA, we plan
to work out unsplit solution methods in the future.

To develop some experience with the integration of equations eq.(2.28)-eq.(2.30), let us
focus on the simplest example: a freely moving object. Without external forces, we find that
we effectively need to solve:

Ḃb = Ib
−1[Bb × Ib[Bb]].

The specific off-diagonal block diagonal form of the total inertia leads to an almost inde-
pendent treatment of the translational and angular part of the motion, as we can see by
writing out the equation by means of the Euclidean split into Euclidean and ideal terms for
Bb = Bb + εvb.

Ḃb = Ib
−1[Bb × Ib[Bb]]

= Ib
−1[m (−vb ·Bb) ·O −Bb × IC [Bb] I]

= ε (−vb ·Bb) + I−1
C [Bb × IC [Bb]], (B.1)

using some details spelled out in Exercises D.14 and D.15, and the inverse inertia from
eq.(A.5). Since this should equal Ḃb = Ḃ + εv̇b, we have in the free motion case:{

v̇b = −vb ·Bb

Ḃ = I−1
C [Bb × IC [Bb]],

(B.2)

The angular part only depends on Bb, the translational part also contains a rotational element
(since when the object frame rotates, so do translational velocities measured relative to it).
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These equations should be solved for Ḃb in each of the cases, and then the motor can be
obtained by integrating Ṁ = −1

2
M Ḃb.

B.2 Free Spherical Top

Let us first take the simplest of the simplest: a uniform spherical object with mass m. Its
inertial eigenvalues are all identical1 (call them i), so that IC [Bb] = i ? Bb. Therefore the
contribution of Bb × IC [Bb] is zero in this spherical case. In the body frame, the differential
equation for Bb then reduces to

Ḃb ≡ Ḃb + εv̇b = −ε (vb ·Bb). (B.3)

Let us unclutter our equations by momentarily dropping the body subscripts on Bb and vb;
we are working the body frame until further notice.

For the Euclidean part B, the equation Ḃ = 0 integrates to a constant B = B0. Then we
find from the ideal part that v̇ = −v ·B0 implying:

v = M̃B0
v0MB0

, with MB0
≡ e−B0t/2, (B.4)

with v0 an integration constant vector. Therefore the total body frame bivector Bb is the
rather ungainly

Bb = B0 + M̃B0
(εv0)MB0

. (B.5)

We need to find M by integrating Ṁ = −1
2
MBb (see eq.(2.28)), but with the time-dependence

of Bb this requires some work. Note that B0 is invariant under MB0
, i.e., MB0

B0M̃B0
= B0,

so we can write Bb in the form Bb = M̃B0
(B0 + εv0)MB0

. This suggests considering the

differential equation for the motor MB0
MM̃B0

instead.

d
dt

(MB0
MM̃B0

) =

= (MB0
MM̃B0

)×B0 +MB0
ṀM̃B0

= −1
2
B0 (MB0

MM̃B0
) + 1

2
(MB0

MM̃B0
)B0

−1
2
MB0

M
(
B0 + M̃B0

(εv0)MB0

)
M̃B0

= −1
2
B0 (MB0

MM̃B0
)− 1

2
(MB0

MM̃B0
) εv0.

It follows from this by direct integration that MB0
MM̃B0

= MB0
M0Mv, with Mv =

exp(−1
2
εv0t/2) and M0 an integration constant.

Restoring the body subscripts, the differential equation for the body frame Bb we found
in eq.(B.5) is thus solved by

M = M0Mvb
MBb0

= MvwM0MBb0
= e−(εvw0)t/2M0 e

−Bb0t/2,

1It does not have to be a sphere, any object with this property of equal principal inertias will do, such as
a cube of uniform density.
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Figure B.1: The motion of a point on a freely moving sphere: a uniform rotation around a
uniformly translating centroid.

where εvw0 = M0(εvb0)M̃0 (note that vw0 = M0vb0M̃0 would not make vw0 Euclidean).
Reading from the right, we see how the object with initial pose M0 is rotated as an angular
rate Bb in the body frame, then moved by M0 to the world frame, and finally translated
with world frame velocity vw0. We can learn from such processing that a rotating vector
vb in the body frame (as we obtained from the body frame integration of Ḃb in eq.(B.5)) is
perhaps more easily seen as a constant vector vw0 in the world frame. Apparently, that is
what eq.(B.3) implied.

During the derivation, we found that there are two constants of motion. In the body
frame, there is Bb0, which because of Lb = iBb0 can also be written in terms of the body
angular momentum Lb. In the world frame, there is the conserved quantity vw0, which
because of pw = mvw0 can be expressed in the linear momentum p ≡ pw of the object’s
translation. We can also express the body angular momentum in the world frame through
the line Lw = M0LbM̃0, but the factor of I in the inertia term implies that only the ideal
part contributes; the angular motion direction is a location-independent quantity. So it is
better to define the purely Euclidean 2-blade L ≡ Lw through ILw = M(ILb)M̃ .

To summarize, the spherical top moves with the motor

M = e−(εp/m) t/2M0 e
−(Lb/i) t/2

= e−(εp/m) t/2 e−(L/i) t/2M0, (B.6)

in terms of its world frame constants of motion p and L and its material properties m and
i. Here M0 is the initial state of its world frame (in both position and orientation) relative
to the body eigenframe. This is illustrated in Figure B.1. Note that the two exponentials
in eq.(B.6) cannot be merged by addition of their bivectors, since those do not generally
commute.
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B.3 Free Rotationally Symmetric Top

Having used the spherical top to develop our basic techniques, we now handle the rotationally
symmetric top. For such a top, two principal eigen-inertias are identical (see [1] Ch. 28, for
pretty arguments about symmetries of inertias); let us pick i3 as the odd one out, and set
i1 = i2 = i. We then have, as the body frame inertia,

IC [Bb] = iBb + (i3 − i) [Bb]3 E3, (B.7)

where [Bb]3 ≡ −Bb ∗ E3 denotes the third coordinate of Bb on the inertia eigenbasis. We
will be working in the body frame for the remainder of this section, so let us drop the body
subscripts for Bb and vb, to unclutter our equations.

We can use eq.(B.7) to set up the explicit differential equation for the body frame bivector
Bb.

Ḃb = Ib
−1[Bb × Ib[Bb]]

= −ε (v ·B) + I−1
C [B× IC [B]]

= −ε (v ·B)− I−1
C [(i− i3)[B]3 B× E3]

= −ε (v ·B)− (1− i3/i)[B]3 B× E3.

So the equation to be solved for Bb is:

εv̇ + Ḃ = −ε(v ·B)−B×
(
(1− i3/i) [B]3 E3) (B.8)

We are allowed to consider the Euclidean and ε-parts separately, by Appendix C.4.

• It follows from the Euclidean part of eq.(B.8) that Ḃ has a zero E3 component (due
to the commutator product). Therefore B has a constant third component [B]3E3 as
a constant of motion. We define the constant body frame bivector A (with the ‘A’ a
mnemonic for the symmetry Axis) as

A = (1− i3/i) [B]3 E3. (B.9)

(We will find a more compact expression for A below, after we have derived the con-
stancy of the angular momentum.) Then the differential equation for B is the Euclidean
part of eq.(B.8), i.e., Ḃ = B× (−A). It is solved by

B = M̃A B0MA, with MA ≡ e−At/2,

with integration constant B0 the rotational angular velocity in the body frame at time
0. We see that A is interpreted as the constant component of the angular velocity
around the symmetry axis E3, but that the object may also be rotating simultaneously
around the other axes. (Below, we will see that eq.(B.7) is actually the conserved
angular momentum Lb; then A, including its inertia-dependent scale factor, can be
compactly characterized as ‘the component of the angular momentum Lb along the
symmetry axis’.)
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B.3. FREE ROTATIONALLY SYMMETRIC TOPAPPENDIX B. HAND COMPUTATION OF SIMPLE CASES

• From the ideal part of eq.(B.8), we find the familiar equation

ε v̇ = −ε (v ·B).

This may look like the ideal part of eq.(B.3) in the spherical top, but now we cannot
just integrate it, since we have just seen that B is not constant: it is of the form
B = MAB0M̃A, with MA a time-varying motor. So let us massage the equation for v̇
by putting that motor MA into the quantity to be determined:

d
dt

(
MA(εv)MA

)
(B.10)

=
(
MA(εv)M̃A

)
×A +MA(εv̇)M̃A

=
(
MA(εv)M̃A

)
×A +MA

(
ε(−v ·B)

)
M̃A

=
(
MA(εv)M̃A

)
×A− (MA(εv)M̃A) ·B0

= −
(
MA(εv)M̃A

)
× (B0 −A). (B.11)

The relevant quantity is apparently the constant bivector B0 − A. We notice from
eq.(B.7) that it can be written as IC [B0]/i. The constant IC [B0] is in fact the angular
momentum Lb in the body eigenframe at time zero – and therefore, at any time. So let
us denote

B0 −A ≡ Lb/i (B.12)

Then eq.(B.11) integrates to MAvM̃A = e(Lb/i)t/2vw0 e
−(Lb/i)t/2. The integration con-

stant is a constant velocity vw0 in the world frame. In fact, mvw0 is the classical linear
momentum vector p and the derivation shows that linear momentum is conserved under
free motion of the symmetric top. The integration thus results in

εv = M̃A M̃Lb
(εvw0)MLb

MA, with MLb
≡ e−(Lb/i)t/2. (B.13)

The motor MLb
MA produces a flowerlike orbit for any point of the object when viewed

in a world frame at its centroid, ‘an A-rotation within an Lb-rotation’, see Figure B.2.

• Now that we realize that Lb is constant, we can write the expression eq.(B.9) for A more
compactly, in terms of the preserved angular momentum Lb or the preserved rotation
rate B0 around the symmetry axis:

A = B0 − Lb/i

= (1− i3/i) [B0]3 E3

= (i1 − i3) [Lb]3 E3. (B.14)

The constant rotation rate A around the symmetry axis is thus simply proportional to
the E3-axis component of either Lb or B0.

• Combining the results for the rotational and translational parts, we have found Bb as
a function of time:

Bb = B + εv = M̃A

(
B0 + M̃Lb

(εp/m)MLb

)
MA.

in terms of its constants of motion A, Lb and p, and where B0 = Lb/i + A.
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Finally, we need to find the actual motor M from the body frame bivector Bb by integrating

Ṁ = −1
2
M Bb.

The time-varying nature of Bb makes this non-trivial. Let us first play the same trick as
before, wrapping the disturbance around the variable:

d
dt

(MAMM̃A) =

= (MAMM̃A)×A +MAṀM̃A

= (MAMM̃A)×A− 1
2
(MAMM̃A) (MABbM̃A)

= (MAMM̃A)×A− 1
2
(MAMM̃A) (B0 +MLb

(εvw0) M̃Lb
)

= −1
2
A (MAMM̃A)− 1

2
(MAMM̃A) (B0 −A + M̃Lb

(εvw0)MLb
)

= −1
2
A (MAMM̃A)− 1

2
(MAMM̃A) (Lb/i + M̃Lb

(εvw0)MLb
)

= −1
2
A (MAMM̃A)− 1

2
(MAMM̃A) (Lb/i)− 1

2
(MAMM̃A) (M̃Lb

(εp/m)MLb
).

where we used that Lb is invariant under the rotation by MLb
. In Appendix C.5 we show

the straightforward technique to integrate this form. We then find from eq.(C.15) that it
integrates to involve a motor for the bivector εp/m.

MAMM̃A = MAMpM0MLb
with Mp ≡ e−(εp/m)t/2.

Ultimately, the motor of the symmetric top is thus:

symmetric top motor: M = MpM0MLb
MA = MpMLM0MA. (B.15)

In the second expression, we defined the Euclidean 2-blade of constant angular momen-
tum L ≡ Lw in the world frame through ILw = M0(ILb)M̃0, and its motor as MLw =
exp(−(L/i)t/2). We could similarly move the motion constant A to its world frame repre-
sentation.

An example of the motion of an object point under such a symmetric top motor is in-
dicated in Figure B.3. It is of course essentially a translated version of the kind of motions
depicted in Figure B.2, moved by the linear momentum. Setting M0 = 1, we can visualize the
total motion as a top spinning around its symmetry axis with body angular velocity A, and
that axis then spinning around the body angular momentum axis Lb. The latter is called the
precession of the axis of rotation. Depending on the relative values of the object parameters i
and i3, and the motion constants L and A, points on the top trace out different curves. Note
that if the inertias are all equal, so i3 = i, only the rotation caused by the angular momentum
L remains, as expected – this is the ‘spherical’ top of Section B.2.

Physical aside. This natural motion of a free top is rather surprising (would
you not expect the rotation to happen purely around the angular momentum, as
in the spherically symmetric case?), and sufficiently counterintuitive that many
computer-generated movies set in space get their rotational spacecraft motions
wrong in this respect. But of course, if they would do it correctly, the audience
might feel that it was wrong – the dilemma of realistic rendering...
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Figure B.2: Implementation of the solution eq.(B.15) for the free symmetric top in 3D. A
point x (red) on a free spinning symmetric top, close to its symmetry axis (in gray). The
principal moments of inertia are i = 1, i3 = 3. The angular momentum 2-blade Lb is indicated
by its dual axis (green). Values of (1− i3/i) vary from −4 to 2 to 5.

The above derivation extends the GA treatment of the symmetric top in Doran & Lasenby
[9]. They solve it by a combination of classical GA at the body frame, and a priori physical
insight (realizing the constancy of L and p at the start). As usual in physics texts, they treat
the rotation only, as the most interesting part of the motion. Not having PGA or CGA at
the time, they would not have been able to treat translation on the same footing anyway. We
now see that, in the end, the top just translates by a final translation motor, so the classical
separation of rotation and translation is (of course) fully justified. We just wanted to show
that the complete derivation can be done in PGA, and how the motion constants A, L and
p are then forced upon us algebraically – there is no need for physical insights or experience
to solve the equations.

B.4 Non-symmetric Free Top

The equations of the general free top moved by a motor M = exp(−B(t)/2) are still İw[Bw] =
0. Let us work out the equations in the body frame; then İb[Bb] = 0 becomes, in an object
moved by the motor M :

0 = d
dt
Ib[Bb] = Ib[Ḃb] + Ib[Bb]×Bb,

by eq.(2.24). A natural choice for the body frame of the top is to take its origin at the
centroid and the principal inertia directions as our frame directions. Then Bb is the purely
Euclidean Bb, and

0 = −İb[Bb] = IC [Ḃ] I + (IC [Bb] I)×Bb = (IC [Ḃ] + IC [Bb]×Bb) I,

which due to the Euclidean nature of the factor of I (see Section C.1) gives

IC [Ḃ] = Bb × IC [Bb].
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Figure B.3: Implementation of the solution eq.(B.15) for the free symmetric top. A free
symmetric top, with linear momentum. Two orbits with different choices of the constants of
motion.

We then obtain the two familiar differential equations whose solution produces the motor M :{
Ṁ = −1

2
M Bb

Ḃ = I−1
C [ Bb × IC [Bb] ]

(B.16)

We are not going to solve these, but instead point the interested reader to the implementation
in the Ganja Coffeeshop at enkimute.github.io/ganja/js/examples. There the equations
are solved numerically by the RK4 method, so you can see the free top tumble over the
screen. Again, you can also roll you own ganja and change the sizes of the principal inertias
to study the effect on the motion.

Especially interesting is the demonstration of the instability of the second principal axis,
by specifying an initial rotation that is close to it: this is an illustration of the ‘tennis racket
theorem’ (aka the Dzhanibekov effect). It is fairly simple to derive that when the principal
inertias are ordered i1 ≥ i2 ≥ i3 ≥ 0, the second rotation axis is unstable. For we compute
from the orientational Euler equation in eq.(B.16):

Ḃ = Ḃb1 E1 + Ḃb2 E2 + Ḃb3 E3

= I−1
C [(Bb1 E1 +Bb2 E2 +Bb3 E3)× (i1Bb1 E1 + i2Bb2 E2 + i3Bb3 E3)]

= I−1
C [(i2 − i3)Bb2Bb3 E1 + (i3 − i1)Bb3Bb1 E2 + (i1 − i2)Bb1Bb2 E3]

=
i2 − i3
i1

Bb2Bb3 E1 +
i3 − i1
i2

Bb3Bb1 E2 +
i1 − i2
i3

Bb1Bb2 E3. (B.17)

Thus defining ω1 = i2−i3
i1

, and cyclic, the equations read

Ḃb1 = ω1Bb2Bb3

Ḃb2 = ω2Bb3Bb1 (B.18)

Ḃb3 = ω3Bb1Bb2.
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Figure B.4: Playing with the Dzhanibekov/tennis racket effect on a free top in ganja.js, see
https: // enki. ws/ ganja. js/ examples/ pga_ dyn. html# Dzhanibekov .

This appears symmetrical; but note that while ω1 and ω3 are positive, ω2 is negative. If the
object thus happens to be spinning with, say, positive values of Bb1, Bb2, Bb3, it immediately
reduces the angular velocity Bb2 and increases Bb1 and Bb3. This shows that E2 is not a stable
axis for rotations, unlike the axes E1 and E3. You can play with this example numerically,
by eliminating the Gravity and Damping forques from the demo in Section 2.5.8.

B.5 Inertial Intuition

If all these subtleties already happen in free motion, without forques, how much more involved
will the general case be? As Doran & Lasenby (in [9], pg.74) phrase the phenomena (our
italics):

In general, the total angular momentum will not lie in the same plane as the
angular velocity. This is one reason why rigid-body dynamics can often seem
quite counterintuitive. When we see a body rotating, our eyes naturally pick out
the angular velocity by focusing on the vector the body rotates around. Deciding
the plane of the angular momentum is less easy, particularly if the internal mass
distribution is hidden from us.

But it is the angular momentum that responds directly to the external torques,
not the angular velocity, and this can have some unexpected consequences.

Even in the torqueless case, the tennis racket effect already shows counterintuitive aspects of
Newtonian motion...
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Appendix C

Background Material

C.1 Useful PGA Nuggets

When we start computing kinematics and dynamics, some routine computations recur. We
collect some of those nuggets and their derivations here, so that we can refer to them and
focus more fully on the physics than on the algebra. Skip them at first reading, and use them
as needed; or view them as exercises to brush up your GA skills.

We give relationships for the PGA of d-dimensional Euclidean space, with pseudoscalar
I = ε Id.

• Inner and outer product between a vector and multivector:

x · A = 1
2

(xA− Â x) (C.1)

x ∧ A = 1
2

(xA+ Â x), (C.2)

where Â = (−1)grade(A) A. This holds for general multivectors (with the sign swap
considered per contained grade).
If A is a blade and the vector x is ‘in’ the space spanned by that blade A (so that
x ∧ A = 0), we have as commutation relationship:

x ∈ A ⇐⇒ xA = −Â x = (−1)grade(A)−1Ax. (C.3)

• Duality relative to pseudoscalar.
For multivectors A and B both residing in a subspace spanned by a pseudoscalar I, we
have duality of inner and outer product with a vector:

(x · A) I = x ∧ (AI) (C.4)

(x ∧ A) I = x · (AI). (C.5)

(The former only holds for all A if the inner product is taken to be the contraction
[10].)

• Commutation of PGA pseudoscalar Id = εId and Euclidean vector v:

Id v = ε Id v

= (−1)d−1εv Id

= (−1)d v Id. (C.6)
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• Points joined to vanishing points: show that Q ∨ (uId) = u ·Q.

Solution: The join of a point Q (of grade d) and a direction uI (of grade d) can
be derived in two ways, using the join definition by reciprocal pseudoscalar from [13]
(easy) or by Hodge duality (a bit more involved):

Q ∨ (uId) =
((

(uId)cIrd
)
∧ (QcIrd)

)
cId =

(
(u ·Q)cIrd

)
cId = u ·Q (C.7)

or, using the Hodge dual,

Q∨ (uId) = ?−1
(

(?Q ∧ ?(uId)
)

= ?−1
(
(ε+ q) ∧ u

)
= uId + (u∧q) Id = u ·Q. (C.8)

For readers of [13] lower than version 2.0, we have now decided to redefine the join
with a swapped order, namely as A ∨ B =

(
(BcIr) ∧ (AcIr)

)
cI = ?−1(?A ∧ ?B), to

correspond better to the homogeneous-coordinate-aligned software. This also returns
the Common Factor Axiom to the order it has in [3]: (A∧B)∨(B∧C) = (A∧B∧C)∨B.

• Commutator of direction uI and bivector B = B + εv

(uI)×B = (uI)× (B + εv)

= 1
2

(
u B−B u I)

= (u ·B) I. (C.9)

Only the Euclidean part B of B remains, to produce a vector direction (aka ideal point).

• Commutation with a bivector B:

A ∗ (A×B) = 0 (C.10)

for a bivector B and arbitrary A. We show this using the cyclic property of the scalar
product (see e.g. [10]), which we can use since the commutator with a bivector is
grade-preserving on A: 2A ∗ (A × B) = 〈AAB − ABA〉0 = 〈AAB〉0 − 〈ABA〉0 =
〈AAB〉0 − 〈AAB〉0 = 0.

• Translation of a PGA multivector in a Euclidean split:

TC [X + εY] ≡ (1 + ε c/2) (X + εY) (1− ε c/2)

= X + ε 1
2
(cX− X̂ c) + εY

= X + ε(c ·X) + εY, (C.11)

with X and Y purely Euclidean. Thus Euclidean elements translate by adding an
appropriate ε-part, and ε-parts themselves are translationally invariant.

• The classical cross product for vectors in 3D is embedded in 3D GA as the dual of an
outer product:

a× b ≡ −(a ∧ b) I3. (C.12)

In this text, we will mostly use the × symbol for the commutator product of geometric
algebra. Only incidentally we revert to the cross product, to show correspondence to
some classical 3D result, and then we will indicate this explicitly.
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• Equations involving the non-invertible pseudoscalar I.
Because the pseudoscalar is not invertible, an equation like X I = A I is not uniquely
solvable as X = A. Any element εC may be added to solution X = A, and the new X
will also satisfy the equation. But if we know that both X and A are purely Euclidean,
then X I = A I is uniquely solved as X = A.

C.2 Canonical Decomposition of a Bivector

Lines in 3D PGA are 2-blades, factorizable by the outer product. The sum of 2-blades in
the 4-dimensional representational space is no longer necessarily a 2-blade: it is a general
bivector (which is not necessarily factorizable by the outer product). However, bivectors can
always be split into a 2-blade L (representing a line or force) and an ideal line LI (where I
is the homogeneous pseudoscalar).

We repeat the bivector split for a bivector B from [10].

A bivector B can be decomposed as a sum of two commuting 2-blades using the
formula

B = B
(
1− 1

2

B ∧ B̃
B · B̃

)
︸ ︷︷ ︸

Euclidean line

+ 1
2
B
B ∧ B̃
B · B̃︸ ︷︷ ︸

vanishing line

, (C.13)

unless B · B̃ = 0; then B is already a vanishing line.

For a particular bivector of the form B = B + εv, with B and v a Euclidean vector and
bivector, respectively, this gives:

B · B̃ = 〈(B + εv) (B̃− εv)〉0 = B · B̃

and
B ∧ B̃ = 〈(B + εv) (B̃− εv)〉4 = 2ε (v ∧ B̃)

so that

B
B ∧ B̃
2B · B̃

= (B + εv) ε (v ∧B−1) = ε (v ∧B)/B.

This leads to the ‘Chasles split’ of the bivector B

B =
(
B + ε (v ·B)/B

)
︸ ︷︷ ︸

ω L

− ε (v ∧B)/B︸ ︷︷ ︸
ν LI

.

showing the rotational and translational screw components ωL and νLI. Compact code for
this will appear in [6].
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C.3 Commutation Rules

We will be mostly working in the PGA of 3D space, and its pseudoscalar I ≡ εI3 = ε e1e2e3.
In many computations, we need to reshuffle geometric products to a standard form, so we
need to be aware of the commutation rules. We display those for a PGA of d-dimensional
space – in some applications like image processing d = 2 is also of interest.

Let us consider an element A of grade a, and denote it as A = Aa + εAa−1, the bold
denoting Euclidean parts of the grade indicated. We are particularly interested in the com-
mutation behavior relative to ε, Id and I = εId.

• Commuting with ε:

A ε = (Aa + εAa−1)ε = Aaε = ε(−1)aAa = ε Âa = ε Â,

where we introduced the usual hat notation for the grade inversion; and since ε2 = 0,
we can absorb the ε-part of A in the pattern.

• Commuting with Id:

A Id = (Aa + εAa−1)Id

= Id
(
(−1)a(d−1)Aa + (−1)(a−1)(d−1)+dεAa−1

)
= (−1)a(d−1) Id(Aa − εAa−1

)
= (−1)ad Id(Âa + εÂa−1).

• Commuting with I = ε Id:

A I = Aa I = (−1)a(−1)a(d−1)IAa = (−1)ad IA.

In 3D (and general odd-D), the commutation rules are thus

A ε = ε Â, A I3 = I3 A, (εA) I3 = −I3 (εA), A I = Â I.

In 2D (and general even-D), the commutation rules are thus

A ε = ε Â, A I2 = I2 Â, (εA) I2 = I2 (εÂ), A I = A I,

where now I = εI2.

C.4 Solving p · C + P I Equations

In the main text, we unpeeled the momentum/forque equation into the classical force and
torque equations for linear and angular momentum. Let us show that this is permitted.

Theorem 1 For a point C (represented as a d-blade) and d-dimensional null pseudoscalar
I ≡ ε Id, the following linear bivector equation involving Euclidean vectors p and q and
Euclidean bivectors P and Q can be solved simply by equating the corresponding parts:

p · C + P I = q · C + Q I ⇐⇒ p = q and P = Q, (C.14)

despite the non-invertibility of I.
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Proof: The term p · C also contains I-parts, so this it not immediate. Let
us rewrite in terms of the origin point O which is represented by the Euclidean
pseudoscalar Id. We rewrite:

p · C + P I = p ·O + (c ∧ p + P) I,

and similar for the right hand side.
Then the Euclidean parts should be identical, giving p · O = q · O, so that

p Id = q Id, and therefore p = q.
Also, the I-parts should be identical, which by subtracting I(c−p) = I(c−q)

from both sides reduces to P I = IQ. Rewriting that to εP Id = εQ Id, divide
both sides by Id to find εP = εQ. Even though ε is not invertible, the assumed
Euclidean nature of P and Q yields that they must be equal for this to hold. �

C.5 Motor Chain: Derivative and Integration

In the symmetric top example of Section B.3, we had three constants of motion: A was the
rotational E3 component in the body frame, L was the angular momentum in the rotating
frame, and p was the linear momentum vector in the world frame, leading to a PGA line
momentum of p · C through the centroid.

Let us call such invariant bivectors B1, B2, B3 respectively, and denote their motors
Mi(t) = exp(−1

2
Bit) (where we may drop the time-dependence as shorthand). Then the

total motor M can be constructed from these, and from the constant motor that indicates
the frame transformations between body and world frame. Body frame elements are denoted
by a prime (and are hence to the right of M0).

For three motors, this gives several alternative forms:

M = M3M0M
′
2M

′
1

= M3M2M0M
′
1

= M3M2M1M0.

Differentiating these then also gives different patterns to match for integration of M :

−2Ṁ = B3M +M (M̃ ′
1B
′
2M

′
1) +M B′1

= B3M + (M3B2M̃3)M +M B′1

= B3M + (M3B2M̃3)M +M (M̃0B1M0).

Therefore once we have brought the differential equations in one of these forms, we can read
off the motor M .

Note the subtlety in the placement of the reverses: body frame entities are reversed
relative to the ‘natural’ order of world frame entities. The initial state motor M0 could be
placed anywhere, one should put it in the most natural place to parametrize the initial state.

Similar patterns can be developed for motors for more than three invariants, though then
the combinatorics on the alternative forms that may arise starts to explode.
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Appendix D

Exercises

In order to keep the main text readable, we have deferred some of the technical algebraic
details to these Exercises. You can try your hand at them, or just read them as the derivations
of results required in the main text.

1. Show that in 2D PGA, a bivector rate ωC, where C is the centroid of the object, leads
to an inertia I[ωC] = ωiε, where i = Σimir

2
i with ri the location vector of mass point

miXi relative to C. Numerically, this is what one would expect from a rotation around
the centroid; the vector factor ε denotes an ideal line, which we should apparently learn
to interpret as that of a pure rotation around the centroid. (With Section 2.2.8.)

Solution: Xi ∨ (Xi × ωC) = ωXi ∨ (riI2 × I2) = ωXi ∨ (εri) = ωXi ∨ ((riI2)I2) =
ω (riI2) ·Xi. Then P = Σiω (riI2) ·Xi = ωΣi(riI2) · (riI2) + 0 = ω (Σimir

2
i ) ε.

2. Show that in 2D PGA, a bivector rate εv leads to an inertia line I[εv] = mv ·C, where
m = Σimi and C = ΣimiXi/m is the centroid of the object. This the motion line that
one would expect from a translation. (With Section 2.2.8.)

Solution: I[εv] = ΣimiXi∨(Xi×(εv)) = ΣimiXi∨(I2×(εv)) = mC∨(vI2) = mv ·C.

3. The classical vector form of the inertia map eq.(2.16) is a 7→ Σimiri× (a× ri). Show
that this map is related to the GA-based bivector inertia as a 7→ IC [aI3]/I3.

4. Show that IC [B] is a symmetric map, i.e., that A · IC [B] = Bw · IC [A].
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Solution:

A · IC [B] = A · Σimi ri ∧ (ri ·B)

= −A ·
(

Σimi ri ·
(
ri ∧ (BI3)

))
I3

= −
(
A ∧ Σimi ri ·

(
ri ∧ (BI3)

))
I3

= −(AI3) ·
(

Σimi ri ·
(
ri ∧ (BI3)

))
= −Σimi

(
(AI3) ∧ ri

)
·
(
ri ∧ (BI3)

)
= −Σimi

(
(BI3) ∧ ri

)
·
(
ri ∧ (AI3)

)
= B · IC [A].

5. Continuing the eigenstructure of the classical inertia of Section A.5, Within the context
of 3D PGA, we have three more dimensions IEj. Establish that they are eigenblades
as well, and compute their eigenvalues.

Solution:

IC [I3Ej] = IC [εEj I3]

= εΣimi ri ∧ (ri · (EjI3))

= εΣimi

(
ri · (ri ∧ Ej)

)
I3

= Σimi

(
r2
i Ej − ri ∧ (ri · Ej)

)
I3

=
(
Σmir

2
i − ij) Ej

)
I3

= (mr2 − ij) I3Ej.

Here we defined r2 = Σimir
2
i /Σmi as a weighted mean squared size of the point cloud.

6. (Continuing from previous) As an additional exercise, you might show that mr2 equals
the trace Σkik of the classical inertia operator IC [].

Solution: We can easily prove mr2 = Σj ij by decomposing each ri in terms of the
eigenvectors EjI3, and expanding:

mr2 = Σimir
2
i

= Σi,jmi

(
ri · (EjI3)

)2

= Σi,jmi

(
(ri ∧ Ej) I3)

)2

= Σi,jmi(ri ∧ Ej) (Ẽj ∧ ri)

= Σi,jmi(Ẽj ∧ ri) · (ri ∧ Ej)

= Σj Ẽj ·
(
Σimi ri · (ri ∧ Ej)

= Σj Ẽj · (ijEj)

= Σj ij.
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7. (Continued) Write out the 3D classical inertia map IC [] explicitly on the 3D PGA bivec-
tor basis.

Solution:

IC [B′ + εv′]

= i1B
′
1E1 + i2B

′
2E2 + i3B

′
3E3

−(i2 + i3) v′1 I3E1 − (i3 + i1) v′2 I3E2 − (i1 + i2) v′3 I3E3

8. (Continued) Show that the additional bivectors I3Ej of the classical inertia map IC []
has no effect on kinematics.

Solution: In the total inertia Iw[Bw], the classical inertia IC [Bb] occurs with a fac-
tor I, so only the Euclidean part remains:

IC [Bb] I = IC [Bb] I3.

9. Show that the 2D total inertia can be viewed as a matrix 0 0 i
0 −m 0
m 0 0


on a properly chosen basis (which you should specify).

Solution: Ib[εe1] = m? (εe1) = me2, Ib[εe2] = m? (εe2) = −me1, Ib[e1e2] = i? (e1e2) =
iε. So for the given matrix, the input basis was {εe1, εe2, e1e2}, and the output basis
{ε, e1, e2}. Note that meet lines (which in 2D PGA are bivector points) are transformed
to lines (which in 2D PGA are vectors).

10. A special case of the PGA inertia is that of a single mass point. Investigate it, and
make sensible choices for the inverse to replace eq.(2.21).

Solution: In this case, the principal moments are zero, so Ib[ ] becomes purely Eu-
clidean and the Euclidean part of its argument plays no role:

for a mass point: Ib[Bb + εvb] = mvbO.

(For instance, in 3D PGA the I3e23 = εe1 coefficient of the input is v1, and that turns
into v1e23 = v1e1I3 = [vb]1O; and cyclic.) Thus only the translational motion of the
rate plays a role in the motion of a point (as one would expect).

For a point, the inertia is clearly non-invertible. If we take the limit of the point as a
very small ball with principal moments ii = ρ, and take the limit ρ→ 0, then

for a mass point: Ib
−1[Bb + εvb] = 1/0vb ·O + I(?B)/m.

We can therefore only sensibly invoke the inverse inertia with purely Euclidean argu-
ments; this will amount to again ignoring the rotational aspects of the point mass.

Just to verify signs: Ib
−1[Ib[εvb]] = Ib

−1[mvbO] = IvbÕ = εvb.
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11. (Continued) Determine Newton’s equation for the motion of a mass point, using the
above inverse in eq.(2.28).

Solution: For a point mass, we have to reduce the rate to the translational part
εv, or the inverse inertia map does not exist (see Exercise 10). So set Bb = εvb (see
Section 2.1.2 to see why the body frame velocity rate is not zero!). Then during the
computation we find that we also have to limit the force Fb to its Euclidean part fb ·O.
We then obtain

Ḃb = ε v̇b

= Ib
−1[(εvb)× Ib[εvb] + Fb]

= Ib
−1[(εvb)× (mvbO) + fb ·O]

= Ib
−1[0 + fb ·O]

= ε fb/m.

Hence we retrieve Newton’s law for a point mass: fb = mv̇b in the body frame. Trans-
forming to the world frame, the rate equation εv̇w = εfw/m similarly leads to fw = mv̇w.
This very degenerate case of a moving infinitesimal mass point will not occur in practice,
but it is comforting to see it included in the limit.

12. Compute the radius of a unit weight sphere that has the Hodge dualization of bivectors
as its body inertia map, i.e., Ib[B] = ?B.

Solution: Since the moment of inertia of a sphere with uniform mass m and radius r
equals 2

5
mr2 (according to standard tables), it follows that a sphere with radius

√
5/2

and m = 1 has a body frame inertia that effectively makes an angular momentum equal
to the Hodge dual of any bivector you give it.

13. Take an object with unit mass m = 1 and Ib[B] = ?B. Write the equation of motion
eq.(2.28) in terms of the Hodge dual.

Solution: For the bivectors involved, the Hodge undual is the same as the Hodge
dual, for all dimension-dependent signs cancel. Therefore

Ḃb = ?1
2

(
Bb ? Bb − ?BbBb + 2Fb

)
.

14. The body frame inertia has a special form which allows a minor additional simplifica-
tion, requiring only the Euclidean part of Bb in the commutator product. Derive that
Ib[Bb]×Bb = Ib[Bb]×Bb.

Solution: We have computed Ib[Bb + εvb] = mvb · O + IC [Bb] I, so the commutator
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can be computed more explicitly.

Ib[Bb]×Bb = Ib[Bb + εvb]× (Bb + εvb)

= (mvb ·O + IC [Bb] I)× (Bb + εvb)

= (mvb ·O + IC [Bb] I)×Bb +m (vb ·O)× (εvb) + 0

= (mvb ·O + IC [Bb] I)×Bb + 0

= Ib[Bb + εvb]×Bb

= Ib[Bb]×Bb.

15. (continued from previous) Show that the Euclidean part of the body frame commutator
can be rewritten using

B× (v ·O) = −(v ·B) ·O

.
Solution:

4B× (v ·O) = 2B(v ·O)− (v ∧O)B

= BvO −BÔv − vOB + ÔvB

= BvO + BvO − vBO − vBO

= 2(Bv − vB)O

= −4(v ·B) ·O.

16. Show that the derivative of the inertia in the world frame of is

d
dt

Iw[Bw] = Iw[Bw]×Bw + Iw[(MBwM̃)×Bw + Ḃw]. (D.1)

Solution:

d
dt

Iw[Bw] = d
dt
M Ib[M̃ BwM ] M̃

= Iw[Bw]×Bw +M ( d
dt

Ib[M̃ BwM ]) M̃

= Iw[Bw]×Bw +M Ib[Bw × (M̃BwM) + M̃ ḂwM ] M̃

= Iw[Bw]×Bw + Iw[(MBwM̃)×Bw + Ḃw].

The quantity MBwM̃ = M2BbM̃
2 is strange: it is a world quantity transformed by

M , so a body quantity transformed by M2. Yet the commutator occurring above,
(MBwM̃)×Bw, is not zero, so the term does contribute.

17. The expression f · Q takes the correct representational form automatically; it truly is
just a line, in any dimension. Show this, and especially appreciate what happens in
2D.
Solution: We wrote O to represent the origin, which in the PGA of d-dimensional
Euclidean space is the Euclidean pseudoscalar Id = e1 ∧ e2 ∧ · · · ∧ ed (since it is the
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intersection of the d coordinate hyperplanes of the chosen coordinate frame). The same
applies to a general point Q, with properly displaced hyperplanes.

The expression f · Q is then the intersection with the additional hyperplane f , indeed
producing a line. In 2D PGA, f · Q is a vector, and thus a hyperplane – which in 2D
is a line.

18. Use Appendix C.2 to split off the ideal line LI3 from a total forque (aka wrench) in 3D
PGA given by F = f ·O −TOI3.
Solution:

LI3 = (f · I3 −TOI3)
(
(f · I3 −TI3) ∧ (−f ·O + TOI3)

)
/(f · I3)2

= (f · I3)
(
(f · I3) ∧ (TOI3)

)
/(f2)

= ε f−1 I3

(
fI3 ∧TOI3

)
= ε f−1

(
fI3 ∧TOI3

)
I3

= −ε f−1
(
fI3 ·TO

)
= −ε f−1

(
TO · fI3

)
= −ε f−1

(
(TO ∧ f)I3

)
= −ε

(
f−1 · (f ∧TO)

)
I3

= −
(
f−1 · (f ∧TO)

)
I3.

We can see this LI3 as the measure of ‘screwyness’: if it is zero, L is a line 2-blade
rather than a screw 2-vector. Note that it is independent of the choice of origin, despite
appearances: f ∧TO = f ∧TQ for any Q.

You could also solve this problem somewhat more directly from the split expression
LI3 = ε(v ∧B)/B using B = fI3 and v = τ = T/I3.

19. Rewrite eq.(A.22) as a Euclidean split, and show that the resulting equations of motion
are still the same as eq.(A.23) and eq.(A.24).

Solution:

m (v̇w + c · Ḃw) ·O −
(
c ∧ (v̇w + c · Ḃw) +M IC [R̃ḂwR] M̃

)
I.

20. When processing constraints, we may come across the equation

B ×X = C, for a 2-blade B.

Solve this!

Solution: This is only solvable if B and C anti-commute: BC = −CB (Proof: add
equation multiplied on left and right with B, and use the fact that B2 is scalar). The
solution is then X = B−1 × C, modulo any element that commutes with B. (Proof:
easily verified by substitution.)
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APPENDIX D. EXERCISES

21. Lagrangian
Fill in the details of the derivation of the Lagrangian-based equation ‘invoking some
standard differentiation results’.

Solution: First, realize that the join-based Lagrangian can be written as a scalar-
product based Lagrangian:

〈A ∨B〉 = 〈B IrA〉. (D.2)

(Show this yourself.) Then we have some standard results for the derivatives of a scalar
product using its symmetries:

∂ψ〈BA〉 = −2 ∂ψ〈ψ−1 ψ̇ A〉 = 2ψ−1 ψ̇ Aψ−1

∂ψ̇〈BA〉 = −2 ∂ψ̇〈ψ
−1 ψ̇ A〉 = −2 ∂ψ̇〈ψ̇ Aψ

−1〉 = −2Aψ−1.

It follows that
d
dt
∂ψ̇〈BA〉 = −2 Ȧ ψ−1 + 2Aψ−1 ψ̇ ψ−1.

We thus obtain from differentiating a scalar-product-lagrangian:

0 = ∂ψ〈BA〉 − d
dt
∂ψ̇〈BA〉

0 = ψ−1 ψ̇ Aψ−1 + Ȧ ψ−1 − Aψ−1ψ̇ψ−1

0 = ψ−1 ψ̇ A+ Ȧ− Aψ−1ψ̇

Ȧ = B × A

Back to the inertia, substitute A = BIr to obtain eq.(2.38). The main text then notes
that in our identity eq.(D.2) we might also have written IrB rather than BIr. With
that symmetry, the ultimate result I[Ḃ] = B× I[B] follows. You can remove the left Ir
by a dot product with ε, then left multiply by the inverse of Id.

22. 6D Coordinate Frameworks
From the PGA point of view, Plücker coordinates (from line coordinate representa-
tion) and pure dual quaternions (from motion representation) are very closely related.
Explain how.
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