biVector.net   /tools

The online tools below allow you to generate code, explore Cayley tables and visualizations for arbitrary geometric algebras.

Click below to download the reference source code for the algebra you selected.
** These implementations are generated to be simple and small, ignoring computational and storage efficiency. Checkout /lib for efficient and mature libraries.

Cayley Table

1e0e1e2e3e01e02e03e12e31e23e021e013e032e123e0123
e00e01e02e03000-e021-e013-e032000e01230
e1-e011e12-e31-e0e021-e013e2-e3e123e02-e03e0123e23e032
e2-e02-e121e23-e021-e0e032-e1e123e3-e01e0123e03e31e013
e3-e03e31-e231e013-e032-e0e123e1-e2e0123e01-e02e12e021
e010e0-e021e013000e02-e03e0123000-e0320
e020e021e0-e032000-e01e0123e03000-e0130
e030-e013e032e0000e0123e01-e02000-e0210
e12-e021-e2e1e123-e02e01e0123-1e23-e31e0e032-e013-e3-e03
e31-e013e3e123-e1e03e0123-e01-e23-1e12-e032e0e021-e2-e02
e23-e032e123-e3e2e0123-e03e02e31-e12-1e013-e021e0-e1-e01
e0210e02-e01-e0123000e0e032-e013000e030
e0130-e03-e0123e01000-e032e0e021000e020
e0320-e0123e03-e02000e013-e021e0000e010
e123-e0123e23e31e12e032e013e021-e3-e2-e1-e03-e02-e01-1e0
e01230-e032-e013-e021000-e03-e02-e01000-e00

Instruction counts

For a full multivector, 192 multiplications and 176 additions are needed. Counts per grade can be found in the following table :

mul / addscalarvectorbivector3-vector4-vector
scalar1 / 04 / 06 / 04 / 01 / 0
vector4 / 015 / 821 / 1313 / 63 / 0
bivector6 / 021 / 1327 / 1915 / 83 / 0
3-vector4 / 013 / 615 / 87 / 31 / 0
4-vector1 / 03 / 03 / 01 / 00 / 0

Expression Evaluator

e1, 2e3, e13Multivectors a ^ bOuter Product
a * bGeometric Product a & bRegressive Product
a | bInner Product a << bLeft Contraction
a >>> bSandwich Product !aDual
a.Grade(b)Grade Selection ~aReverse
a.NormalizedNormalisation E**(a)Exponentiation

 

3D Projective Geometric Algebra

R3,0,1\mathbb R^*_{3,0,1} is known as 3D Euclidean Projective Geometric Algebra. Elements represent planes (vectors), lines (bivectors), points (trivectors). The even subalgebra is isomorphic to the dual quaternions and includes all isometries (metric preserving translations and rotations) in 3D.